Instruction Encoding

• Instructions = 1 to 9 bytes long

• First byte = Opcode, or Opcode+Reg

• Second byte (if needed) = the ModRegR/M byte
 - Mod = 2 bits
 - Reg = 3 bits
 - R/M = 3 bits

• Third byte needed for based+indexed addressing mode = the SIB byte
 - S (scaling) = 2 bits
 - I (Index register) = 3 bits
 - B (Base register) = 3 bits

• Plus additional bytes for addresses (offsets) and immediate (constant) values
Encoding Instructions (Appendix C)

• Be familiar with the table on p. 320
 - Abbreviations for operand types
 - Notes on the Reg field of the ModRegR/M byte
 - Abbreviations for the additional fields (ib, iw, id, cd)

• Step 1: Look up the opcode / operand combination in the "Pentium Machine Language Table". Result:
 - First byte = opcode, in hex (+ add register offset, if any)
 - Note about the Reg field of the next (ModRegR/M) byte
 - Immediate value length (if any), or offset value (for jumps)
Encoding (cont.)

• Step 2: If there are no notes on the Reg field, the ModRegR/M byte is not used
 - Immediate values and offset values are encoded in *little-endian* order!
 - Stop.

• Step 3: (there is a ModRegR/M byte) Otherwise, set the Reg field of next byte according to the note
Encoding (cont.)

- Step 4: Match the addressing mode of R/M from the "ModR/M Byte Specification" table
 - If there is one operand, R/M = that operand
 - Else if second operand is an immediate, R/M = first operand
 - Else if both operands are registers, R/M = second operand
 - Else if first operand is in memory, R/M = first operand
 - Else R/M = second operand

- Step 5: Fill in Mod field based on this table, and fill in R/M field
Encoding (cont.)

• Step 6: If based-indexed mode not used, follow ModRegR/M with displacement value (if any), followed by immediate value (if any)
 - Stop.

• Step 7: Otherwise, match the exact form of the index with the table "SIB Byte"
 - Set the SS field according to the table
 - Set the Index field according to the table
 - Set the Base field according to the base register used
• Step 8: Follow SIB with displacement value (if any), followed by immediate value (if any)
 - And stop!
Conditional Jumps

- The operand of a conditional jump is the displacement from the address of the *next instruction after the jump* to the target instruction address
 - Positive displacement if a "forward" jump
 - Negative displacement if a "backwards" jump

- The displacement is a 32-bit value (for us)