
Improving System Improving System

Performance: CachesPerformance: Caches

December 04December 04

CSC201 Section 002

Fall, 2000

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 2

A Motivating ExampleA Motivating Example

• Application: making a (mechanical)
clock

• dozens of tools and pages of
instructions, hundreds of parts /
materials

• Current work: what’s in hand

• Temporary storage: workbench
surface

• Large-scale storage: the garage

• Storage of last resort: mail-order
catalog warehouse

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 3

A Motivating ExampleA Motivating Example
• What happens when you need a tool

or part?
– Check workbench.
– Not found? check garage.
– Not found? Order from catalog (and go

do something else).

• Performance
– How often is it found on workbench, in

garage, or catalog?
– How much time does it take to access

from workbench, garage, or catalog?

• Victim: something has to go to make
room for the new part or tool. Who?

• Other improvements?
– prefetch?
– cabinet between workbench and

garage?

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 4

The Memory HierarchyThe Memory Hierarchy

• Different memory technologies:
semiconductors vs. magnetic disks,
static RAM vs. dynamic RAM,
on-chip vs. off-chip,

• Memory stores instructions and
variables
– we'll assume the unit of access is a

doubleword

• Tradeoff: faster vs. cheaper
– faster: access time (time to read or

write a doubleword)
– cheaper: cost per bit (can afford more

memory if cheaper)

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 5

The Memory HierarchyThe Memory Hierarchy

ch
ea

pe
r

fa
st

er

.001106Disk5
.2020-100Main memory4

10.004-10Off-chip
cache

3
20.002-4On-chip cache2
100.001-2Registers1

$ per MbSpeed
(ns)

MemoryLevel

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 6

Locality of Memory ReferencesLocality of Memory References

• Some variables and instructions are
fetched from memory repeatedly
– loops
– important subroutines
– counters
– important parameters
– flags

• Some variables and instructions are
fetched in a predictable way
– sequential execution of a program
– sequential processing of an array

• Goal of caching: exploit locality!

• For our motivating example....?

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 7

Caches and Their Effect on Caches and Their Effect on
PerformancePerformance

• Inclusion: level i+1 contains
everything found at level i, and more

• Searching:
– Check cache (level 1)
– Not found? Check memory (level 2)

CPU Cache Memory

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 8

Caches and Their Effect on Caches and Their Effect on
PerformancePerformance

• Finding a doubleword in cache = “hit”
– The opposite of a hit is a "miss"

• Critical factors for performance
– Hit (or miss) rate at each level
– Access time at each level

• Formula for average memory access
time (2 levels)

• Example
– Tcache = 1ns
– Tmem = 10ns
– Mcache = .1 (10% miss rate)

Tavg = tcache + Mcache*tmem

Tavg = 1 + .1 * 10 = 2ns

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 9

Caches and Their Effect on Caches and Their Effect on
PerformancePerformance

• In reality, hit rates range from
95-99%

• Improving memory system
performance
– Reduce access times!
– Increase hit rates!
– Add another level to the hierarchy!

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 10

How Caches Are BuiltHow Caches Are Built

• Read a "block" of data from memory
– 1 block = 2-16 doublewords

• Store the block as a "line" in the
cache

• Every line in the cache has a "valid"
bit
– Initially, all lines are invalid
– Becomes valid when you store a memory

block in it

• How do you identify where a cache
line came from?
– Store the block address with the line

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 11

Memory

Cache

Addresses

00000000
00000004
00000008
0000000C
00000010
00000014
00000018
0000001C
00000020
00000024
00000028
0000002C
00000030
00000034
00000038
0000003C
00000040
00000044
00000048
0000004C
00000050
00000054
00000058
0000005C
00000060
…..

2 doublewords = 1 block

Tag or
block
address

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 12

How Caches Are BuiltHow Caches Are Built

• How do you find the address you're
looking for?
– Search the block addresses one at a

time (sequentially)
– Search the block addresses all at the

same time (in parallel)

• Memory that can be searched in
parallel = "associative" memory
– Fast searching, but expensive to build

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 13

Placement PolicyPlacement Policy

• Where in the cache do you put a
block when you bring it from
memory?
– In any line (cache is “associative”)
– Always in one specific line (cache is

“direct”)
– In one of a few lines (cache is “set

associative”)

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 14

Other Cache PoliciesOther Cache Policies

1. Prefetch (blocks from memory)
– If you can predict what will be needed

2. Replacement (choosing a victim)
– "Least recently used" or "least

frequently used" are good candidates

3. Let programmer provide hints
about what to cache
– Used for prefetching, and for

replacing

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 15

Other Cache PoliciesOther Cache Policies

4. Writing a new value to memory
– “Write-through”: update cache and

memory at the same time
– “Write-back”: update memory when

the block is replaced in the cache

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 16

Cache ImprovementsCache Improvements

• Use *two* caches: one for data, and
one for code (instructions)
– Access both at same time
– Optimize them independently

• Use multiple levels of cache
– Most processors today have at least a

first and second level cache

CPU
Level 1
Cache Memory

Level 2
Cache

CSC201 Section
002 Fall 2000

Copyright 2000, Douglas Reeves 17

Programming for Improved Cache Programming for Improved Cache
PerformancePerformance

• Programmer inserts hints in the
program
– E.g., “This is an important variable;

prefetch it, and keep it in the cache”

• Programmer writes the program to
maximize the cache hit rate
– Design code to improve locality
– Increase frequency of access?
– Increase predictability of access?

