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A Motivating ExampleA Motivating Example

• Application: making a (mechanical) 
clock

• dozens of tools and pages of 
instructions, hundreds of parts / 
materials

• Current work: what’s in hand

• Temporary storage: workbench 
surface

• Large-scale storage: the garage

• Storage of last resort: mail-order 
catalog warehouse
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A Motivating ExampleA Motivating Example
• What happens when you need a tool 

or part?
– Check workbench.
– Not found? check garage.
– Not found? Order from catalog (and go 

do something else).

• Performance
– How often is it found on workbench, in 

garage, or catalog?
– How much time does it take to access 

from workbench, garage, or catalog?

• Victim: something has to go to make 
room for the new part or tool. Who?

• Other improvements?
– prefetch?
– cabinet between workbench and 

garage?
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The Memory HierarchyThe Memory Hierarchy

• Different memory technologies: 
semiconductors vs. magnetic disks, 
static RAM vs. dynamic RAM,       
on-chip vs. off-chip, ....

• Memory stores instructions and 
variables
– we'll assume the unit of access is a

doubleword

• Tradeoff: faster vs. cheaper
– faster: access time (time to read or 

write a doubleword)
– cheaper: cost per bit (can afford more 

memory if cheaper)
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The Memory HierarchyThe Memory Hierarchy
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Locality of Memory ReferencesLocality of Memory References

• Some variables and instructions are 
fetched from memory repeatedly
– loops
– important subroutines
– counters
– important parameters
– flags

• Some variables and instructions are 
fetched in a predictable way
– sequential execution of a program
– sequential processing of an array

• Goal of caching: exploit locality!

• For our motivating example....?
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Caches and Their Effect on Caches and Their Effect on 
PerformancePerformance

• Inclusion: level i+1 contains 
everything found at level i, and more

• Searching:
– Check cache (level 1)
– Not found? Check memory (level 2)

CPU Cache Memory
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Caches and Their Effect on Caches and Their Effect on 
PerformancePerformance

• Finding a doubleword in cache = “hit”
– The opposite of a hit is a "miss"

• Critical factors for performance 
– Hit (or miss) rate at each level
– Access time at each level

• Formula for average memory access 
time (2 levels)

• Example
– Tcache = 1ns
– Tmem = 10ns
– Mcache = .1 (10% miss rate)

Tavg = tcache + Mcache*tmem

Tavg = 1 + .1 * 10 = 2ns
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Caches and Their Effect on Caches and Their Effect on 
PerformancePerformance

• In reality, hit rates range from      
95-99%

• Improving memory system 
performance
– Reduce access times!
– Increase hit rates!
– Add another level to the hierarchy!
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How Caches Are BuiltHow Caches Are Built

• Read a "block" of data from memory
– 1 block = 2-16 doublewords

• Store the block as a "line" in the 
cache 

• Every line in the cache has a "valid" 
bit
– Initially, all lines are invalid
– Becomes valid when you store a memory 

block in it

• How do you identify where a cache 
line came from?
– Store the block address with the line
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Memory

Cache

Addresses

00000000
00000004
00000008
0000000C
00000010
00000014
00000018
0000001C
00000020
00000024
00000028
0000002C
00000030
00000034
00000038
0000003C
00000040
00000044
00000048
0000004C
00000050
00000054
00000058
0000005C
00000060
…..

2 doublewords = 1 block

Tag or 
block 
address
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How Caches Are BuiltHow Caches Are Built

• How do you find the address you're 
looking for?
– Search the block addresses one at a 

time (sequentially)
– Search the block addresses all at the 

same time (in parallel)

• Memory that can be searched in 
parallel = "associative" memory
– Fast searching, but expensive to build
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Placement PolicyPlacement Policy

• Where in the cache do you put a 
block when you bring it from 
memory?
– In any line (cache is “associative”)
– Always in one specific line (cache is 

“direct”)
– In one of a few lines (cache is “set 

associative”)
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Other Cache PoliciesOther Cache Policies

1. Prefetch (blocks from memory)
– If you can predict what will be needed

2. Replacement (choosing a victim)
– "Least recently used" or "least 

frequently used" are good candidates

3. Let programmer provide hints 
about what to cache
– Used for prefetching, and for 

replacing
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Other Cache PoliciesOther Cache Policies

4. Writing a new value to memory
– “Write-through”: update cache and 

memory at the same time
– “Write-back”: update memory when 

the block is replaced in the cache
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Cache ImprovementsCache Improvements

• Use *two* caches: one for data, and 
one for code (instructions)
– Access both at same time
– Optimize them independently

• Use multiple levels of cache
– Most processors today have at least a 

first and second level cache

CPU
Level 1 
Cache Memory

Level 2 
Cache
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Programming for Improved Cache Programming for Improved Cache 
PerformancePerformance

• Programmer inserts hints in the 
program
– E.g., “This is an important variable; 

prefetch it, and keep it in the cache”

• Programmer writes the program to 
maximize the cache hit rate
– Design code to improve locality
– Increase frequency of access?
– Increase predictability of access?


