Spectrum of a Square Wave
Results of Some Filters

(a) Increasing frequency sine wave; (b) low-pass filtered; (c) high-pass filtered; (d) bandpass filtered; (e) bandstop filtered.
Notation

• $x[n]$ and $y[n]$ are discretely sampled signals

• $z[n] = x[n] + y[n]$ = addition of two signals to produce a third signal

• A "system" modifies one signal to produce another
Fundamental Concept of DSP

If

\[x[n] \] can be decomposed into a set of additive components

and a system acting on \(x[n] \) produces an output \(y[n] \)

and the system is applied to each of the additive components individually to produce a set of outputs

Then

adding the outputs together will produce \(y[n] \)
Figure 5-11
The fundamental concept in DSP. Any signal, such as $x[n]$, can be decomposed into a group of additive components, shown here by the signals: $x_0[n]$, $x_1[n]$, and $x_2[n]$. Passing these components through a linear system produces the signals, $y_0[n]$, $y_1[n]$, and $y_2[n]$. The synthesis (addition) of these output signals forms $y[n]$, the same signal produced when $x[n]$ is passed through the system.
Convolution

- Let a system acting on $x[n]$ be represented as $h[n]$

- *Convolution* is defined as
 - $y[i] = \sum_{j=0}^{M} (x[i-j] \cdot h[j])$

- Notation for convolution: $y[n] = x[n] * h[n]$
Convolution Example

Figure taken from Smith, The Scientist and Engineer's Guide to Digital Signal Processing

FIGURE 6-8
FIGURE 6-9
The convolution machine in action. Figures (a) through (d) show the convolution machine set to calculate four different output signal samples, y[0], y[3], y[8], and y[11].
Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
Some Examples of Convolution

a. Low-pass Filter

b. High-pass Filter

FIGURE 6-3
Examples of low-pass and high-pass filtering using convolution. In this example, the input signal is a few cycles of a sine wave plus a slowly rising ramp. These two components are separated by using properly selected impulse responses.

Figure taken from Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
Examples (cont’d)

a. Inverting Attenuator

![Graph showing the input signal, impulse response, and output signal with convolution.]

b. Discrete Derivative

![Graph showing the input signal, impulse response, and output signal with convolution.]

FIGURE 6-4
Examples of signals being processed using convolution. Many signal processing tasks use very simple impulse responses. As shown in these examples, dramatic changes can be achieved with only a few nonzero points.

Figure taken from Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
Convolution: Boundary Values

- What values do you use for $x[i]$ when $i<0$ or $i>n$?
- One solution: "pad with zeros"

Figure 6-10
End effects in convolution. When an input signal is convolved with an M point impulse response, the first and last $M-1$ points in the output signal may not be usable. In this example, the impulse response is a high-pass filter used to remove the DC component from the input signal.

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
Another View

- Convolution = "sum of weighted components"
- Weighting coefficients or factors = values of the samples of $h[n]$
"Calculus-Like" Convolution Operations

- "First difference"
 - each sample of the output = difference between adjacent samples in the input

- "Running sum"
 - each sample in output = sum of all the input samples up to that sample

- First difference and running sum are inverses
"Calculus-Like" Convolution Operations

a. First Difference
This is the discrete version of the first derivative. Each sample in the output signal is equal to the difference between adjacent samples in the input signal. In other words, the output signal is the slope of the input signal.

b. Running Sum
The running sum is the discrete version of the integral. Each sample in the output signal is equal to the sum of all samples in the input signal to the left. Note that the impulse response extends to infinity, a rather nasty feature.

FIGURE 7-2
Impulse responses that mimic calculus operations.

Figure taken from Smith, The Scientist and Engineer's Guide to Digital Signal Processing
FIGURE 7-3
Example of calculus-like operations. The signal in (b) is the first difference of the signal in (a). Correspondingly, the signal in (a) is the running sum of the signal in (b). These processing methods are used with discrete signals the same as differentiation and integration are used with continuous signals.
Associativity of Convolution

• The order of two or more systems performed in series is irrelevant

• Two or more systems performed in series can be replaced by the convolution of the two systems
Correlation

- **Purpose:** find the "degree of match" between two signals
 - optimal technique for detecting a reference signal or pattern in random noise

- **Definition:**
 - \(y[i] = \text{sum from } j=0 \text{ to } M \text{ of } (x[i+j] \cdot h[j]) \)
Correlation Application

FIGURE 7-13
Key elements of a radar system. Like other echo location systems, radar transmits a short pulse of energy that is reflected by objects being examined. This makes the received waveform a shifted version of the transmitted waveform, plus random noise. Detection of a known waveform in a noisy signal is the fundamental problem in echo location. The answer to this problem is correlation.

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
Illustration of Correlation Computation

Figure taken from Smith, The Scientist and Engineer’s Guide to Digital Signal Processing

FIGURE 7-14
Discrete Fourier Transform (DFT)

- Decompose an N-point signal into \((N/2+1)\) sine waves and \((N/2+1)\) cosine waves
 - to be determined: amplitude of each sine and cosine wave

- The sine and cosine waves form an orthogonal basis function
Illustration of Fourier Transform

FIGURE 8-1a
(see facing page)

Figure taken from Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
Illustration (cont’d)

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
Terminology of DFT

- ReX[N] = real part of the frequency domain representation
- ImX[N] = imaginary part of the frequency domain representation
 - note: ImX[0] = ImX[N/2] = 0, always
- No complex arithmetic in this course!
- Independent variable = i/N = fraction of the sampling frequency
Scaling ReX and ImX

• Scaling needed to get amplitudes of basis functions

EQUATIONS 8-3
Conversion between the sinusoidal amplitudes and the frequency domain values. In these equations, \(\text{Re} \tilde{X}[k] \) and \(\text{Im} \tilde{X}[k] \) hold the amplitudes of the cosine and sine waves needed for synthesis, while \(\text{Re} X[k] \) and \(\text{Im} X[k] \) hold the real and imaginary parts of the frequency domain. As usual, \(N \) is the number of points in the time domain signal, and \(k \) is an index that runs from 0 to \(N/2 \).

\[
\begin{align*}
\text{Re} \tilde{X}[k] & \equiv \frac{\text{Re} X[k]}{N/2} \\
\text{Im} \tilde{X}[k] & \equiv \frac{\text{Im} X[k]}{N/2}
\end{align*}
\]

except for two special cases:

\[
\begin{align*}
\text{Re} \tilde{X}[0] & \equiv \frac{\text{Re} X[0]}{N} \\
\text{Re} \tilde{X}[N/2] & \equiv \frac{\text{Re} X[N/2]}{N}
\end{align*}
\]

(see p. 156 of Smith for explanation of why scaling is needed)

• \(\text{Re} X \) = amplitude of cosine waves

• \(\text{Im} X \) = amplitudes of sine waves
Synthesis (Inverse DFT)

\[
x[i] = \sum_{k=0}^{N/2} Re\tilde{X}[k] \cos\left(\frac{2\pi ki}{N}\right) + \sum_{k=0}^{N/2} Im\tilde{X}[k] \sin\left(\frac{2\pi ki}{N}\right)
\]

EQUATION 8-2

The synthesis equation. In this relation, \(x[i]\) is the signal being synthesized, with the index, \(i\), running from 0 to \(N-1\). \(Re\tilde{X}[k]\) and \(Im\tilde{X}[k]\) hold the amplitudes of the cosine and sine waves, respectively, with \(k\) running from 0 to \(N/2\). Equation 8-3 provides the normalization to change this equation into the inverse DFT.
Analysis (DFT)

- Correlate $x[n]$ with each of the basis functions
 - reminder: find the "degree of match" between $x[n]$ and each of the basis functions

EQUATION 8-4
The analysis equations for calculating the DFT. In these equations, $x[i]$ is the time domain signal being analyzed, and $Re X[k]$ & $Im X[k]$ are the frequency domain signals being calculated. The index i runs from 0 to $N-1$, while the index k runs from 0 to $N/2$.

$$Re X[k] = \sum_{i=0}^{N-1} x[i] \cos\left(\frac{2\pi k i}{N}\right)$$

$$Im X[k] = \sum_{i=0}^{N-1} x[i] \sin\left(\frac{2\pi k i}{N}\right)$$

Figure taken from Smith, *The Scientist and Engineer's Guide to Digital Signal Processing*
Example: First Part of Correlation

FIGURE 8-8
Polar Notation

- (skip)
FIGURE 10-1
Homogeneity of the Fourier transform. If the amplitude is changed in one domain, it is changed by the same amount in the other domain. In other words, scaling in one domain corresponds to scaling in the other domain.
Additivity of the Fourier transform. Adding two or more signals in one domain results in the corresponding signals being added in the other domain. In this illustration, the time domain signals in (a) and (b) are added to produce the signal in (c). This results in the corresponding real and imaginary parts of the frequency spectra being added.
Compression and Expansion of Time-Varying Signals

- Equivalent to resampling at a higher or lower rate
- *Interpolation* = adding samples
- *Decimation* = removing samples

![Graphs showing compression and expansion](image)

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*.

FIGURE 10-12
Compression and expansion. Compressing a signal in one domain results in the signal being expanded in the other domain, and vice versa. Figures (c) and (d) show a discrete signal and its spectrum, respectively. In (a) and (b), the time domain signal has been compressed, resulting in the frequency spectrum being expanded. Figures (e) and (f) show the opposite process. As shown in these figures, discrete signals are expanded or contracted by expanding or contracting the underlying continuous waveform. This underlying waveform is then resampled to find the new discrete signal.
Expansion (cont’d)

• Resampling from the actual (analog) signal -- no problem!

• Resampling from a discrete (digital) signal -- problems!
 – How do you interpolate between samples -- linear? curve fit?
 – Better idea: convert to frequency domain, pad with zeros, synthesize back to time domain at new rate
Expansion (cont’d)

FIGURE 10-13
Interpolation by padding the frequency domain. Figures (a) and (c) each consist of 50 samples. These are interpolated to 400 samples by padding the frequency domain with zeros, resulting in (b) and (d), respectively. (Figures (b) and (d) are discrete signals, but are drawn as continuous lines because of the large number of samples.)
Digital Filters

- "Thousands of times better performance than analog filters"
- Implementing a filter = convoluting a signal with the filter kernel

Figure 14.3
The four common frequency responses. Frequency domain filters are generally used to pass certain frequencies (the passband), while blocking others (the stopband). Four responses are the most common: low-pass, high-pass, band-pass, and band-reject.

Figure taken from Smith, *The Scientist and Engineer's Guide to Digital Signal Processing*
Filter Characteristics

Figure 14.4
Parameters for evaluating frequency domain performance. The frequency responses shown are for low-pass filters. Three parameters are important: (1) roll-off sharpness, shown in (a) and (b), (2) passband ripple, shown in (c) and (d), and (3) stopband attenuation, shown in (e) and (f).
Filter Design

- High pass, band pass, and band reject can be derived from low pass filters

Input signal

\[x(n) \]

\[\text{h}(n) \rightarrow y_{l}(n) \rightarrow - \rightarrow y_{h}(n) \]

- low-pass filter
- Low frequencies of \(x(n) \) only
- high frequencies of \(x(n) \) only

An exercise for the reader: how can you construct band pass and band reject filters from this?
Moving Average Filter Design

- $M = \text{order of the filter}$
 - Higher $M = \text{better filter quality}$, lower $M = \text{less computation}$

EQUATION 15-1
Equation of the moving average filter. In this equation, $x[]$ is the input signal, $y[]$ is the output signal, and M is the number of points used in the moving average. This equation only uses points on one side of the output sample being calculated.

$$y[i] = \frac{1}{M} \sum_{j=0}^{M-1} x[i-j]$$
FIGURE 15-1
Example of a moving average filter. In (a), a rectangular pulse is buried in random noise. In (b) and (c), this signal is filtered with 11 and 51 point moving average filters, respectively. As the number of points in the filter increases, the noise becomes lower; however, the edges become less sharp. The moving average filter is the optimal solution for this problem, providing the lowest noise possible for a given edge sharpness.

Figure taken from Smith, *The Scientist and Engineer's Guide to Digital Signal Processing*
Ideal Filter Design

- Start with frequency transform of the desired response

1. Do IDFT to time domain

2. Terminate the infinite series at $M+1$ points

3. Shift to range 0 to M

4. Multiply by Blackman window to compensate for finite effects
Ideal Filter Design Illustration

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
FIGURE 16-1

Illustration (cont’d)

Figure taken from Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
Filter Design (Bottom Line)

- f_c is fraction of sampling rate
 - E.g., if sampling rate is 8000 samples/sec, and you want a cutoff frequency of 2000 cycles/sec, then $f_c = 2000/8000 = .25$

$$h[i] = K \frac{\sin(2\pi f_c (i/M/2))}{i \cdot M/2} \left[0.42 \pm 0.5 \cos \left(\frac{2\pi i}{M} \right) \pm 0.08 \cos \left(\frac{4\pi i}{M} \right) \right]$$

EQUATION 16-4
The windowed-sinc filter kernel. The cutoff frequency, f_c, is expressed as a fraction of the sampling rate, a value between 0 and 0.5. The length of the filter kernel is determined by M, which must be an even integer. The sample number i, is an integer that runs from 0 to M, resulting in $M+1$ total points in the filter kernel. The constant, K, is chosen to provide unity gain at zero frequency. To avoid a divide-by-zero error, for $i \neq M/2$, use $h[i] = 2\pi f_c K$.
Sources of Information

- Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
 - Chapter 6
 - Delta function and impulse response - skim only
 - Convolution - read
 - Input side algorithm - not needed
 - Output side algorithm - read
 - Sum of weighted inputs - read
 - Chapter 7
 - Delta function - not needed
 - Calculus-like operations - read
 - Low-pass and high-pass filters - read
 - Causal and non-causal signals - not needed
 - Zero phase etc. - not needed
 - Mathematical properties - read
 - Correlation - read
 - Speed - not needed
Sources of Information

- Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
 - Chapter 8
 - Family of Fourier Transforms - read
 - Notation and format of the Real DFT - read
 - Frequency domain independent variable - read
 - DFT basis functions - read
 - Synthesis, calculating the inverse DFT - read
 - Analysis, calculating the DFT - read
 - Duality - not needed
 - Polar notation - skim
 - Chapter 9
 - Spectral analysis of signals - read only the starting part
 - Frequency response of systems - not needed
 - Convolution via the frequency domain - useful, not needed
Sources of Information

- Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
 - Chapter 10
 - Linearity of fourier transform - read
 - Characteristics of phase - not needed
 - Periodic nature of DFT - skim
 - Compression and expansion, multirate - read
 - Multiplying signals (modulation) - skip
 - Chapter 11–13 - not needed
 - Chapter 14
 - Filter basics - read
 - How information is represented - skip
 - Time domain parameters - skim only
 - Frequency domain parameters - read
 - High-pass, band-pass, and band-reject filters - skim only
 - Filter classification - skim only
Sources of Information

- Smith, *The Scientist and Engineer’s Guide to Digital Signal Processing*
 - Chapter 15
 - Implementation by convolution - read
 - Noise reduction vs. step response - skim only
 - Frequency response - skim only
 - Rest of chapter... - skip
 - Chapter 16
 - Strategy for the windowed sinc filter - skim only
 - Designing the filter - read
 - Rest of chapter... - skip
And More Sources of Information

- [Pierce81] *Signals: The Telephone and Beyond*
- [McClellen98] *DSP First: A Multimedia Approach*