IMAGES AND COLOR

N. C. State University

CSC557 ♦ Multimedia Computing and Networking

Fall 2001

Lecture # 10
IMAGES AND COLOR

N. C. State University

CSC557 ♦ Multimedia Computing and Networking

Fall 2001

Lecture # 10
Questions / Problems / Announcements

• ???
Converting Light to/from Digital Images

• Devices for converting analog-to-digital
 – Digital cameras
 – Scanners

• Devices for converting digital-to-analog
 – Monitors
 – Projectors

• “Samples” of light = pixels of an image
 – Sampling rate / spatial resolution → how many pixels are there in the image?

• Quantization of light = bits / pixel
 – Color resolution → how many colors can be represented?
Physics of Light

• Spectrum of light
 – which frequencies are present
 – Energy, or intensity, of each frequency

Source: http://www.handprint.com/HP/WCL/color1.html
Perception of Light: Color

- **Hue** is determined by the dominant frequency
 - “What color is it?”
 - black, gray, and white have no dominant frequency, thus no hue

- **Brightness, or intensity, or luminance**, is related to total energy from all frequencies present
 - “Is the color bright or dark?”
 - relationship is roughly logarithmic
 - We can see (and tolerate) a range of brightness that spans at least 9 orders of magnitude

- **Saturation (or purity)** is determined by the ratio of (dominant_frequency_energy) / (total_energy)
 - “Is the color deep/intense, or is it pale or washed out?”
 - Stronger dominant frequency or less other frequencies → more saturated color
Sensitivity of Cones (Receptors) in Human Eye
Opponent Model of Color Vision
The Opponent Model (cont’d)

1. The combined stimulation to the R and G cones is interpreted as the brightness or lightness of a color. Luminosity is the dominant visual information recorded by the eye.

2. The relative proportion of stimulation received by the R cones in contrast to the G cones creates the perception of red or green. (The B cones contribute slightly to clarify warm color saturation.)

3. If the R and G cones are stimulated approximately equally (and much more than the B cones), we see the color yellow.

4. The relative proportion of stimulation received by the B cones, in contrast to the R and G cones combined, creates the perception of blue.

5. If all three types of cones are stimulated approximately equally, we see no specific hue -- that is, we see white, gray or black.
The HSI Color System

• Advantage: corresponds naturally to our perception of color

• Hue = shade of color
 – ranging from 0 to 2*Pi Radians (or 0 to 360 degrees)

• Saturation = purity of color
 – ranging from 0 to 1

• Intensity = intensity of color
 – ranging from 0 to 1
The HSI Color System Example
The Gray-Scale Color System

- **Gray-scale** = intensity component of color only
 - No hue or saturation information

- **Resolution**
 - 8 bits / pixel is gray-scale
 - 1 bit / pixel is monochrome (black and white)
Grayscale

- 8 bits
- 6 bits
- 5 bits
- 4 bits
Primary Colors

- Any 3 independent colors describe a region (a triangle) of color
- The 3 corners of the triangle = the primary colors
- No triangle, no matter what primaries are picked, contains all the visible colors
The CIE Color System

- An international color standard
- Represents saturation and luminance only (not brightness)

Source: http://www.photo.net/photo/edscott/vis00020.htm
The RGB Color System

• An additive (emitted light) color system
 – How much R, G, or B is emitted by the light source?

• Advantage: this is the system our retinas are based on
 – and it’s the way that monitors are constructed

• Color resolution
 – 8 bits for each primary \rightarrow 24 bits / pixel
RGB Color Specification

Source:
http://www.photo.net/photo/edscott/vis00020.htm
The RGB “Cube”

Source: http://www.photo.net/photo/edscott/vis00020.htm
RGB Mixing

Source: http://www.photo.net/photo/edscott/vis00020.htm
Converting HSI from RGB

• Ranges
 – Let R, G, and B be normalized to be in the range 0…1
 – H = 0…2\pi radians
 – S, I = 0…1

\[
\theta = \cos^{-1}\left(\frac{1}{2}\frac{[(R-G) + (R-B)]}{\left[(R-G)^2 + (R-B)(G-B)\right]^{1/2}}\right)
\]

H = \theta if G \geq B, otherwise H = 2\pi - \theta

S = 1 - 3 \times \min(R,G,B)/(R+G+B)

I = (R+G+B)/3
Example

R = 53/255 = .2078
G = 190/255 = .7451
B = 206/255 = .8078

θ = \cos^{-1}(1/2*[(.2078-.7451) + (.2078-.8078)] / [(.2078-.7451)^2 + (.2078-.8078)\times(.7451-.8078)^{1/2}]) =
\cos^{-1} (-.5687 / [.2887 + (.6)\times(-.0627)]^{1/2}) =
3.046

H = 2\pi - θ = 3.23 radians = 185 degrees

S = 1 - 3* min(.2078,.7451,.8078) / (.2078+.7451+.8078) =
.6459, or 65%

I = (.2078+.7451+.8078) / 3 = .5869, or 59%
The YCbCr Color System

- The standard used for JPEG, MPEG, etc.
- $Y = \text{brightness or luminance}$
- $Cb, Cr = \text{chrominance (color) information}$
- Ranges
 - Let R, G, and B be normalized to be in the range $0..1$
 - $Y = 0..1$
 - $Cb, Cr = -.5..+.5$
Converting RGB ↔ YCbCr

\[Y = 0.299R + 0.587G + 0.114B \]
\[Cb = -0.169R - 0.331G + 0.500B \]
\[Cr = 0.500R - 0.419G - 0.081B \]

Example

\[R = \frac{53}{255} = 0.2078 \]
\[G = \frac{190}{255} = 0.7451 \]
\[B = \frac{206}{255} = 0.8078 \]

\[Y = 0.592 \]
\[Cb = 0.122 \]
\[Cr = -0.274 \]
The YIQ Color System

- Used in the NTSC color TV standard
- One luminance channel, two color (chroma) channels
- Conversion from RGB

\[
Y = .30R + .59G + .11B \\
I = .60R - .28G - .32B \\
Q = .21R - .52G + .31B
\]

- The YUV color system
 - Used in the PAL color TV standard
 - Another color system with one luminance channel and two primaries
Color Channel Subsampling

- Goal: compress an image by taking fewer samples

- The eye is more sensitive to brightness (Y) than hue or saturation (Cb, Cr)
 - therefore, take more samples for Y, fewer samples for Cb and Cr
 - Subsampling is used in many image compression formats
4:4:4 Format

- For every pixel, there is 1 sample of Y, 1 sample of Cb, and 1 sample of Cr
4:2:0 Format

- For every pixel, there is 1 sample of Y
- For every 4 pixels is 1 sample of Cb, 1 sample of Cr
Color Lookup Tables

• Array, or table, of possible color values
 – quantization of color
 – saves memory
 – Improves compression effectiveness

• Palette = the set of colors in the table
 – 8 bits / pixel → 256-color pallette

• Pixel value
 – rather than being a color, it is an index into this array
Color Lookup Example

Frame Buffer

<table>
<thead>
<tr>
<th>4</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Color Map

<table>
<thead>
<tr>
<th>Red Value</th>
<th>Green Value</th>
<th>Blue Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>109</td>
<td>89</td>
<td>12</td>
</tr>
<tr>
<td>250</td>
<td>128</td>
<td>121</td>
</tr>
</tbody>
</table>

Output

- Red
- Green
- Blue
Choosing a Palette

- What is the “best” set of colors to use for the palette?

- One technique: recursive bisection
 - Divide 3-D color space into regions containing approximately the same number of pixels per region
 - Substitute for all pixel colors in this region one of the colors
 - examples: center point in rectangular space, center of mass, ...
Example (2-D only, R and B, G=0)

- Goal: replace 17 distinct colors with only 4 values
Diffusing, or Dithering, the Error

- Color sampling introduces errors
- If errors are spatially clustered, errors are obvious
 - “bands” of color
- Solution: spread the errors out
 - Low-pass filter (blur) the error terms

For $c_p =$ next pixel p’s color, scanning from left to right, top to bottom

$c_q =$ quantized color of p (from color palette)

compute $c_e = c_p - c_q =$ error in c_q

diffuse c_e to the c_p values of the pixels below and to the right

replace pixels p’s color c_p with c_q

endfor
Diffusion Example (Floyd-Steinberg Algorithm)

Diffuse c_e to the c_p values of the pixels below and to the right :

- add $3/8 \cdot c_e$ to pixel immediately below
- add $3/8 \cdot c_e$ to pixel immediately to right
- add $1/4 \cdot c_e$ to pixel diagonally below and to right

Example Input Pixel Values (red only) =

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Upper left hand pixel value replaced by 160

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>150</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Error (200-160=40) diffused to neighbors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>165</td>
</tr>
<tr>
<td>85</td>
<td>40</td>
</tr>
</tbody>
</table>
Graphics File Info

- Size of image
- Pixel size and shape
- Bits per pixel, and pallette information
- Compression method
- Color value per pixel
- See: graphics file encyclopedias
Processing Image Files

1. Read headers

2. Read palette into 1-D array

3. Read pixel values into 3-D array
 - look up colors in palette array (RGB triple)

4. Process image pixels in 3-D array

5. Write to image buffer
Sources of Info

- [Crane97] *A Simplified Approach to Image Processing*

 - Section 14-4 on color models