“Roadmap” for Multimedia Networking

1. Introduction
 — why QoS?
 — what are the problems?

2. Basic operations
 — jitter buffers (at hosts)
 — task scheduling (at hosts)
 — packet shaping (at hosts)
 — packet dropping (at routers)
 — packet scheduling (at routers)

3. Types of service
 — Integrated Services (IntServ) and Resource Reservation Protocol (RSVP)
 — Differentiated Services (DiffServ)

4. Application-level feedback and control
 — Real-time Protocol (RTP), Real-time Control Protocol (RTCP)

5. Application signaling and device control
 — Session Description Protocol (SDP)
 — Real-time Streaming Protocol (RTSP)
 — Session Initiation Protocol (SIP)
 — Media Gateway Control Protocol (MGCP)

6. Routing
 — Multi-protocol Label Switching (MPLS)
 — multicasting

Copyright 2001 Douglas S. Reeves (http://reeves.csc.ncsu.edu)
Roadmap

I. Internet Routing

II. Connection-oriented networks

III. MPLS overview

IV. MPLS benefits and applications

V. Encapsulation and hierarchical forwarding

VI. Label distribution
Routing Protocols

- Goal: determine paths to each destination, based on *some* optimality criterion
 - and create routing tables for packet forwarding

- Routing protocol
 1. routers exchange info regarding state of network
 2. run routing algorithm to compute routes (paths)

- Optimization criteria
 - what metric to use (hops, delay, cost,...)?
 - how often does it change?
 - based purely on *destination*, not on source
Requirements For Routing Algorithms

1. Simplicity

2. Scale to large Internet size (hierarchical)

3. "Safe" interconnection of different organizations

4. Adapt to changes in topology

5. Avoid routing loops

6. Efficient (low message overhead, converges quickly)

7. Paths should be (near) “optimal”, according to some criterion
Autonomous Systems
Networks and Autonomous Systems

• In the Internet today...
 — more than 10,000 ASes
 — more than 250,000 networks
Classification of Routing Algorithms

- Intra-domain vs. inter-domain
 - intra-domain: within a single administrative entity (autonomous system)
 - inter-domain: between autonomous systems

- Intra-domain routing protocols
 - single administration → simplicity
 - routing efficiency/optimality is primary objective

- Inter-domain routing protocols
 - larger geographical reach → scalability, security
 - routing policies, distribution of control
 - fault isolation
Routing Optimization

- **Criteria**
 - minimum number of “hops”
 - minimum propagation delay
 - minimum congestion / packet loss
 - least cost

- **Constraints**
 - security considerations
 - business relationships
Fault Recovery and Convergence Time

- Routing algorithms will eventually converge on optimal routes
 - as long as state of the links / routers remain stable
 - no requirement for updates to be synchronized

- During convergence, non-shortest paths and loops may develop
 - "good news travels fast, bad news travels slowly"
Problems with Routing for Multimedia

1. Destination-based routing only
2. Routing recalculation / convergence / fault recovery time
3. Lack of optimization for QoS
Conventional Packet Forwarding

- As a packet travels in an IP network, each router...
 - analyzes the packet's header
 - consults the routing, or forwarding, table
 - chooses a next hop router for the packet
- independently of any choices made for other packets
• Packet headers contain many fields for varying purposes
 — only some of them are used for routing purposes

• Choosing the next hop involves two steps
 — partition the entire set of possible packets into forwarding equivalence classes (FECs)
 — map each FEC to a next hop

• Current forwarding scheme has limitations
 — uses only destination IP address from packet
 — doesn’t support QoS, traffic engineering, fast recovery from failures, ...

Copyright 2001 Douglas S. Reeves (http://reeves.csc.ncsu.edu)
Connection-Oriented Architectures

- Ex.: ATM, Frame Relay, X.25

- A **logical connection** must be set up before data is exchanged
 - the *state* of the connection is maintained at each network switch

- A **flow** is the sequence of datagrams exchanged over a TCP or UDP connection
 - multiple flows may be multiplexed into a single logical connection

- Connection-oriented architectures enable the type of services that not well-supported by conventional IP datagram routing
MPLS Networks

• A logical connection is established between two points in a pure datagram network
 — connection carries normal datagram traffic

• MPLS adds an additional header, containing a *label*
 — identifies the connection

• A *hybrid* architecture (advantages of both?)
 — logical connections can be used for connection-oriented services
 — normal datagram processing (forwarding) still available for datagram services
Where it Fits

- Below the network layer
 - not an end-to-end protocol

<table>
<thead>
<tr>
<th>IPv4</th>
<th>IPv6</th>
<th>IPX</th>
<th>Appletalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATM</th>
<th>Frame Relay</th>
<th>Ethernet</th>
<th>PPP</th>
<th>FDDI...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

← Network Layer

← Link Layer
MPLS Labels and Encapsulation

- Insert in each packet a new header ("shim header")

<table>
<thead>
<tr>
<th>Link Layer Header</th>
<th>MPLS "Shim" Header</th>
<th>IP Header</th>
<th>Payload</th>
</tr>
</thead>
</table>

- A *label* = short, fixed length value
 - used to identify the FEC

- Labels have local significance only
 - adjacent routers must agree on the binding of label ↔ FEC
 - does not have to be globally unique
 - no meaning to the label; just an identifier
The MPLS Forwarding Table

- Add a new table to router: the Label Switching Forwarding Table
 - may be other info in this table, as well (e.g., quality of service)

Forwarding Table

<table>
<thead>
<tr>
<th>Incoming Packet Label</th>
<th>Outgoing Interface</th>
<th>Next Hop Address</th>
<th>Outgoing Packet Label</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>#2</td>
<td>192.0.168.100</td>
<td>12</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Basic MPLS Idea

- Look at the label to pick an outgoing interface
- Then replace the incoming label with the appropriate outgoing label
- Routers that don’t support MPLS do normal packet forwarding
MPLS Terminology

- A *label-switched router (LSR)* can perform MPLS label-switching

- A *label-switched path (LSP)* is a consecutive sequence of LSRs that forward a packet using MPLS

- An *ingress LSR* is the first LSR on a LSP
 - determines FEC for packet from routing table
 - inserts a label (shim header) in front of the packet
 - at this point, the label is *bound* to the FEC at this router

- An *egress LSR* is the last LSR on a LSP
 - responsible for *removing* the label from the packet
Inserting Labels into Packets

Routing table with labels

Packet with label

Ingress router

Backbone router

Backbone

Packet without label

Copyright 2001 Douglas S. Reeves (http://reeves.csc.ncsu.edu)
Label-Switched Paths

- Can start and terminate in the middle of the network
Notes

• Labels are an optimization
 — packets can be routed even if labels aren't set up at all, or are set up on just parts of the path

• Assignment of a packet to an FEC is done only once, as the packet enters the MPLS network
 — subsequent hops do not need to examine the network layer header

• Important questions
 — on what basis are LSPs set up?
 — how are they set up, and how long do they last?
Some Benefits / Applications of MPLS

1. Traffic engineering, source-based QoS routing
2. Route *pinning*
3. Protection and fast rerouting
4. Hierarchical forwarding

- Also: faster packet processing at routers (= greater throughput)
1. Traffic Engineering

• Datagram networks (IP) have poor controllability
 — route on destination address, least-hop path

• MPLS provides better control
 — classification into FECs at entry to LSP may be arbitrarily complex

• Operator can use global optimization algorithms to map traffic demands to physical links
 — not possible using local optimization
2. Route Pinning

- Some applications are sensitive to path changes or disruptions

- IP routing does not guarantee routing changes won’t occur

- MPLS routing
 - LSP will not change unless there is explicit intervention
 - provides a specific and stable path (*pinned* route)
3. Protection and Fast Rerouting

- For datagram networks, routing recovers from failures by computing alternative paths
 - drawback: long latency in reconfiguring network and re-establishing connections is possible

- MPLS provides two choices
 1. dynamically establish new LSPs around points of failure
 - relatively long latency
 - for most datagram traffic
 2. switch to a “backup” LSP previously established for the failed LSP
 - relatively short latency
 - no signaling or setup required
 - much less expensive than using SONET for recovery
Protection Switching

[Diagram showing LSR nodes connected with working and protection LSPs within an MPLS network]
4. Hierarchical Routing and the Label Stack

- A packet may carry several labels
 - organized in a LIFO stack

- Purpose: a hierarchy of label-switched paths
 - e.g., paths within paths

- The bottom of the stack is indicated by a bit in the shim header
Hierarchical Forwarding Example
Hierarchical Forwarding (cont'd)

- One MPLS network can run over another
 - forwarding hierarchy can scale to very large MPLS networks, each constructed from smaller MPLS networks

- Forwarding Table entries include operation to perform on the packet's label stack
 - **swap**: replace label at top of stack with a specified new label
 - **pop**: label stack (end of nested LSP reached)
 - **push**: a new label onto the label stack (start of nested LSP)

Forwarding Table, again

<table>
<thead>
<tr>
<th>Incoming Packet Label</th>
<th>Outgoing Interface</th>
<th>Next Hop Address</th>
<th>Operation</th>
<th>Outgoing Packet Label</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>#2</td>
<td>192.0.168.100</td>
<td>swap</td>
<td>12</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Stack Operations

[Diagram showing stack operations with nodes labeled NHLFE and text annotations for push, swap, and pop/swap.]
Establishing LSPs

• Before traffic forwarding can take place...
 — an LSP must be set up
 — labels / operations must be assigned at each hop

• Two LSP types (based on method used to determine the route)
 — control-driven LSP
 — explicitly-routed LSP or constraint-based LSP (CR-LSP)

• *Label distribution protocol* = method by which one LSR informs another LSR of label↔FEC bindings it has made
Constructing Label-Switched Paths

- Creating labels and FECs
 - Construct when routing table is updated
 - Or, construct when instructed by a "downstream" router
 - Or, construct when packet volume justifies

```
Label = 6
Dest = 192.69.*.*
```

```
Label = 14
Dest = 192.69.*.*
```

```
Label = 25
Dest = 192.69.*.*
```

```
Label = 6
Dest = 192.69.*.*
```

```
192.69.*.*
```
Control-Driven LSPs

- The LSP will be the same path computed by IP routing

- Main benefits
 - simplicity, compatibility with existing routing
 - speed-up of forwarding function
Explicitly-Routed LSPs (CR-LSPs)

- CR-LSP specified by network operator or network management application
 - route for CR-LSP is specified in the setup message
 - setup message traverses all LSRs along the specified route
 - each LSR sends label request to the next-hop LSR

- Network traffic will be directed to a path independent of what is computed by IP routing

- Benefits
 - traffic engineering
 - route pinning
 - etc.
Informing Upstream Routers

• Directions
 — *downstream* = direction in which data is propagated along an LSP to the destination
 — *upstream* = opposite direction (away from destination)

• Technique #1: *on-demand (solicited)* label distribution
 — *upstream* LSR explicitly requests, from its next-hop LSR for a particular FEC, a label↔FEC binding for that FEC

• Technique #2: *unsolicited* label distribution
 — *downstream* LSR distributes its label↔FEC bindings to upstream LSRs that have not explicitly requested them

• Both techniques may be used in same network at same time
On-Demand label Distribution

For FEC F use label L

Which label should I use for FEC F?

Direction of data flow
Direction of Messages

Direction of label requests, and direction of data

Direction of label \leftarrow FEC bindings
Label Distribution Protocols

- Label Distribution Protocol (LDP)
- Explicit routing
 - Constrained-Based Routing LDP (CR-LDP)
 - RSVP extensions
- Extensions to existing routing protocols (e.g., BGP) to carry label information
Explicit (Source) Routing

- Initiating (source) node specifies the route for the LSP
 - based on load balancing, QoS, security, ...
CR-LDP (Internet Draft)

- Extensions to LDP (RFC 3036)
 - carries explicit route information
 - carries traffic parameters for resource reservation
 - (carries options for CR-LSP resilience (e.g., global or local repair))
CR-LDP Steps

1. LSR A determines it needs LSP to LSR C
 - policies / other factors determine route should go through B
 - creates Label Request with route (B,C), + traffic parameters
 - reserves resources for new LSP
 - forwards Label Request to B

2. LSR B receives request and processes it
 - reserves resources (may also reduce resource amount)
 - modifies route to (C)
 - forwards to C
CR-LDP Steps (cont’d)

1. LSR C is egress of LSP
 — makes reservation
 — allocates label
 — sends Label Mapping message back to B (including reservation information)

4. LSR B receives Label Mapping
 — matches to original request
 — finalizes reservation
 — allocates incoming label
 — passes new label to A

5. LSR A receives label mapping
 — matches to request, finalizes reservation
RSVP Extensions for MPLS

- RSVP reservations
 - RSVP "PATH" message is sent from source to destination LSR
 - RSVP "RESV" message sent in reverse direction (from destination to source, in response to PATH message)

- Two MPLS-specific objects added to PATH message
 - "Label Request" object to request label bindings
 - "Explicit Route" object listing LSRs in the path

- One MPLS object added to RESV message
 - "Label" object with the label binding

- Resources are reserved for a LSP at the same time as label assignments are made
 - while RESV message propagated to source
Sources of Info

• Books

• Web
 — L-o-n-g list of web resources: http://www.mplsrgc.com/articles.shtml
 — IETF