CLASSFUL IPv4 ADDRESSES + DATAGRAM FORWARDING

Internet Protocols

CSC / ECE 573

Fall, 2005

N. C. State University

Today's Lecture

- I. IPv4 Addresses
- II. Address Classes
- III. "Special Case" Addresses
- IV. Forwarding Basics
- V. Forwarding Decisions
- VI. Next-Hop vs. Destination Addresses

IPv4 ADDRESSES

How Do Addresses Get Assigned?

- 1. ICANN (Internet Corp. for Assigned Numbers and Names)
 - establishes policy for address and name allocation
 - Allocates top-level address space to regional registries
- 2. Regional registries allocate address space to ISPs, companies, and other organizations
 - APNIC (Asia-Pacific)
 - ARIN (North America)
 - RIPE (Europe)
 - LACNIC (Latin America and Caribbean)
- 3. Sys admins assign individual host addresses

IP Allocation Goals (RFC 2050)

- 1. Conservation: fair distribution of globally unique Internet address space, no stockpiling
- 2. Routability: distribution in a hierarchical manner, makes routing easier
 - good? bad?
- 3. Public registries document address space allocation and assignment

	Dotted Decimal Notation						
 A convenient way to describe (and remember) IPv4 addresses Example 							
	32-bit address	10011000	00000001	00110110	00110000		
	Dotted decimal representation	152	. 1	. 54 .	48		
	copyright 2005 Douglas S. Ranvas. 🔒						

IPv4 ADDRESS CLASSES	• Addresse 1.the ne 2.the ho • x bit Network
	More net fewer ho vice vers

Classful Address Ranges

- The size (number of bits) in the network part is not fixed
 - the first few bits of the address indicate this size
- Classes
 - A = addresses 0.0.0.0—127.255.255.255
 - **B** = addresses 128.0.0.0—191.255.255.255
 - **C** = addresses 192.0.0.0-223.255.225.225
 - **D** = addresses 224.0.0.0—239.255.255.255
 - **E** = addresses 240.0.0.0—255.255.255

Class	Potential Number of Networks	Potential Number of Hosts Per Network
A	2 ⁷ (128)	2 ²⁴ (16M)
В	2 ¹⁴ (16K)	2 ¹⁶ (64K)
с	2 ²¹ (2M)	2 ⁸ (256)

Good or Bad?

- 1. Good: simple, easy to understand
- 2. Bad: limited address space
 - 2³² = 4G addresses not enough?
- 3. Bad: limited network size choices (3)
 - ex.: what if a class C net needs to grow beyond 255 hosts?
- 3. Bad: moving to a new network requires changing IP addresses
 - and may require updating DNS records

Another Special Case

- An IP <u>source address</u> with network ID part = all 0's means "from this network"
- Only allowed at startup (during bootstrapping)
 - allows a machine to communicate temporarily before it learns its own IP address
 - thereafter it must not use network 0

The Loopback Address

- An IP <u>destination address</u> with network ID part = all 1's means "this computer" (i.e., the one sending the packet)
- Used in testing network applications without sending data over a network
 - ex.: "ping 127.0.0.1" should always get a reply!
 - a datagram with destination address 127.x.x.x should never appear on any network

Summary of Special Addresses						
For Address of Type	If Network part is	And Host part is	Then this means 			
	Anything other than all 0's or all 1's	All 0's	The address of the whole network			
Destination	Anything other than all 0's or all 1's	All 1's	Broadcast address for the specified network			
Destination	All 1's	All 1's	Broadcast address for same network as originating host			
Source	All 0's	Anything other than all 0's or all 1's	(host which doesn't yet know what network it is attached to)			
Destination	127 (Class A, all 1's)	Anything	"This computer" (source of the packet)			

RFC 3330: Special-Use IPv4 Addresses

- 0.0.0.0—0.255.255.255 "This" Net
 - "This" Network [RFC1700]
- 10.0.0.0—10.255.255.255 Private-Use Networks [RFC1918]
- 24.0.0.0—24.255.255.255
 Cable Television Networks
- 169.254.0.0—169.254.255.255 Link Local
- 172.16.0.0—172.23.255.255 Private-Use Networks [RFC1918]
- 192.168.0.0--192.168.255.255 Private-Use Networks [RFC1918]
- 224.0.0.0—239.255.255.255 Multicast [RFC3171]
- 240.0.0.0-255.255.255 Reserved for Future Use [RFC1700]

Direct Packet Delivery

- Host H_{x} wishes to send packet to a **neighboring** host H_{v}
 - how does H_x know they are on the same network?
- + H_x frames (encapsulates) the datagram according to the requirements of the network connecting H_x and H_v
- H_x sends this frame directly to H_y
 - there are **no** intervening routers involved

Indirect Datagram Delivery

- Needed if hosts H_x and H_y are not neighbors
 Q: how does H_x figure this out?
- H_x picks a neighboring router R1 to forward the datagram to
- H_x frames the packet, sends directly to R1

Indirect Datagram Delivery (cont'd)

- R1 extracts the packet, picks a neighboring router R2 to forward to, frames the packet, sends to R2
- ...
- Rn extracts packet, determines Hy is a neighbor (how does Rn know this?), frames the packet, sends directly to Hy

Forwarding (or routing) Tables

- Forwarding decisions are based on information computed by routing protocols
 - this information is stored in a forwarding table
- For router R, each entry in its table consists roughly of
 - 1. Key
 - 2. IP address of "next hop" router
 - 3. Which interface to use

Routing Tables (cont'd)

- Notes!
 - the forwarding table does not specify the complete path to the destination
 - the next router must be directly connected to R

Example 82's Forwarding Table						
network 10.0,0.0 10.0.0.5 R1 20.0.0.5	To reach hosts on network	Forward to address	Which interface to use			
network 20.0.0.0 20.0.0.6	20.0.0.0	(direct)	20.0.0.6			
R2 30.0.0.6	30.0.0.0	(direct)	30.0.0.6			
network 30.0.0.0 30.0.0.7 R3	10.0.0.0	20.0.0.5	20.0.0.6			
40.0.0.7 network 40.0.0.0	40.0.0.0	30.0.0.7	30.0.0.6			

Forwarding Decisions

- The key on which forwarding decisions are based is (usually) the destination network ID
- Note that path from H_x to H_y may not be the same as the path from H_y to H_x
- Traffic for destination network N not split across
 multiple paths
- · Why this approach?
 - extremely simple, fast lookup decision
 - drawbacks / limitations?

Forwarding Decisions (cont'd)

- Another benefit: routing tables can be (relatively)
 small
 - many fewer network addresses than there are host addresses
 - ex.: to deliver packets to one class A network having 16M hosts, only one routing table entry needed!

Other Consequences

- · Forwarding (generally) does not consider...
 - application type
 - quality of service requirements
 - bandwidth available
 - congestion
 - reliability
 - ... !

Default" Routes

- Frequently, a single router R is used for most outgoing traffic
 - may need to specify a few destination-specific network routes
 - "everything else" goes through R

Default" Routes (cont'd

- In the forwarding table, there will be an entry with key = "all other (non-specified) destination networks"
 - normal meaning: "the rest of the Internet"
 - simplifies forwarding tables

"Host-Specific" Routes

- The key may be a single destination host address

 allows specifying a route to a single computer
- · Useful for
 - testing and debugging purposes
 - security purposes
 - what else?

The "Datagram Forwarding" Algorithm

/* M is a machine (router or host) making */ /* a forwarding decision about a packet */

Extract destination address Hd,

compute network part N

- if (N matches any directly connected networks) <u>deliver</u> to Hd directly
- else if (there is a host-specific route for Hd) <u>forward</u> datagram to specified next hop
- else if (there is a route for network N)

forward_datagram to specified next hop

The "Datagram Forwarding" Algorithm (cont'd)

else if (there is a default route)

forward datagram to default router

else /* Hd is not directly connected and we */
 /* don't know how to get to it... */

discard the datagram and declare routing error

			Examp	ie			
engr01ras-linux.eos.ncsu.edu% /sbin/ifconfig							
ethO	Link	encap:Ethernet	HWaddr 00:90:27	:71:99:0			
	inet addr:152.1.68.208 Bcast:152.1.68.255 Mask:255.255.255.0						
	UPB	ROADCAST RUNNIN	IG MULTICAST MTU:	1500 Me	tric:1		
	RX p	ackets:2851908	errors:U dropped:	u overru	ns:U trame:U		
		igiong: 0 tyguou	errors:0 dropped: alan:100	o overru	ns:0 carrier:		
	RX h	vtes:737519380	(703.3 Mb) TX bv	tes: 1770	287804 (1688.	2 Mb)	
	Interrupt:19 Base address:OxfceO Memory:fe800000-fe800038						
10	Link encap:Local Loopback						
	inet addr:127.0.0.1 Mask:255.0.0.0						
	UP LOOPBACK RUNNING MTU:16436 Metric:1						
	RX packets:1599968 errors:0 dropped:0 overruns:0 frame:0						
	тх р	TX packets:1599968 errors:0 dropped:0 overruns:0 carrier:0					
collisions:U txqueuelen:U							
	KA E	Area: 1/42043/51	. (1004.9 MD) TX	bytes:17	42043/ST (TOC	(4.9 MD)	
engr01m	as-linu	n.eos.ncsu.edu%	netstat -r				
Kernel	IP rout	ing table					
Destina	tion	Gateway	Gennask	Flags	MSS Window	irtt Iface	
152.1.6	8.0		255.255.255.0		0.0	0 eth0	
169.254	.0.0	*	255.255.0.0		0.0	0 eth0	
127.0.0			255.0.0.0	0	0 0	0 10	
1 - G 1 A							

The "Datagram Receiving" Algorithm if (Hd is one of M's IP addresses) receive the datagram else if (Hd is a limited or directed broadcast address for the network on which it was sent) receive the datagram else if (M is a router) forward the datagram if possible else /* M is a host and this packet is not intended for it */ discard the datagram

Should Multi-Homed Hosts Forward?

- Since they don't participate in routing protocols... probably not!
 - inefficient routes
 - can create loops
 - leads to broadcast "storms"
 - etc.

Destination vs. Next Hop IP Addresses

- The destination IP address in a IP datagram never changes
- At router R, the datagram is framed and a physical address is added to get it to the "next hop router"

DESTINATION vs. NEXT-HOP ADDRESSES

Example (cont'd)

- The next hop router IP address (from the routing table) is never stored in the packet
 - must be translated into a physical address instead
- So... why not just store MAC addresses in routing tables?
 - routing is IP-layer function (i.e., should be independent of the link layer)

Summary

- 1. IP Addresses use two levels of hierarchy
- 2. First few bits of address specify what class it is
- 3. Special addresses reserved for particular uses
- 4. Both hosts and routers have to make forwarding decisions
- 5. Forwarding tables contain the information needed to make these decisions
- 6. Forwarding decisions are based on the destination only

	Next Lecture	
ICMP		
	copyright 2005 Douglas S. Reeves	53