Today’s Lecture

I. ICMP Overview
II. ICMP Error Reporting
III. ICMP Query / Response Messages
IV. ICMP Message Processing

ICMP OVERVIEW

ICMP (RFC 792)
• Communicates…
 – network-level errors
 – information about unexpected circumstances
 – information about the network, in response to queries

What Layer is ICMP?

RFC-792 – “ICMP uses the basic support of IP as if it were a higher level protocol, however, ICMP is actually an integral part of IP, and must be implemented by every IP module.”
ICMP Message Format

- Checksum over entire ICMP message
- ICMP Data usually contains:
 - IP header (including Options, but normally = 20 bytes) of datagram that caused error
 - at least 8 bytes of data from this datagram (usually includes fields needed to identify the cause of the error)

--- Rest of ICMP Header ---

Code

ICMP Message Checksum

Type

ICMP Data (Original IP Header + 8 bytes datagram)

ICMP Message Types

- Error Reporting
- Query & Response

Why ICMP for Reporting Errors?

- Protocol-specific messages?
- For what protocols or functions are ICMP error messages appropriate?

When Not to Send ICMP Error Messages

- An ICMP error message is never generated in response to:
 1. an ICMP error message
 2. a datagram whose source address does not define a single host (address cannot be zero, loopback, broadcast, multicast)
 3. A datagram whose destination address is an IP broadcast address
 4. a datagram sent as a link-layer broadcast
 5. a fragment other than the first one of a datagram
- For each of the above, why?

#1 Destination Unreachable Msgs

- Upon failure to forward/deliver, router sends ICMP message to source before "dropping" datagram
 - IP is best-effort delivery, but discarding datagrams should not be taken lightly
- Several reasons for failure (next slide), but...
 - not all errors can be diagnosed properly (e.g., host IP address changes)
Reasons for Destination Unreachable Messages

- Network unreachable (reason?)
- Host unreachable (reason?)
- Protocol (TCP, UDP) not enabled
- Port not bound to a service
- Fragmentation needed, but DF Flag set
- Source route failed

Path MTU Discovery (RFC 1191)

- Host sets DF Flag and transmits a large datagram
- If datagram size exceeds MTU on some link, the router discards datagram and sends back ICMP Destination Unreachable message
 - message includes size of Next Hop MTU

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>ICMP Message Checksum</th>
<th>ICMP Data (Original IP Header + 8 bytes datagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(unused)</td>
<td>Next Hop MTU</td>
</tr>
</tbody>
</table>

Path MTU Discovery (cont’d)

- Host receiving this error message knows to reduce maximum packet size to the Next Hop MTU
- Periodically host will increase the packet size and try again
 - Why?

#2 Time Exceeded ICMP Message

- Sent if router has detected that the hop count (TTL) has reached zero (code 0)
 - usually means a routing error (loop) occurred
 - why would loops occur if routing protocols work right?
- Or, sent if destination host timeout occurred while waiting for fragments to arrive (code 1)
 - normal timeout interval on the order of 60-120s

#3 Router Redirect Messages

- Hosts normally initialize their forwarding table from a (static) configuration file at startup
 - contains minimal info (e.g., address of single default gateway) for simplicity
 - if network topology changes, this info is obsolete
 - how learn of such changes (host don’t run routing protocols)?
- Redirect messages do not solve the problem of propagating routes in a general way
 - dynamic routing protocols are used for this

#3 Router Redirect Messages (cont’d)

1. When router detects a host using a “suboptimal” route…
2. send ICMP Redirect message to the host requesting that it change its forwarding table
3. forwards original datagram towards its destination
- How to detect a suboptimal route?
 - if router forwards packet out the same interface it came in on
- Which routes should be updated; only for this specific destination?
Example

- Packet from A to B should go through R2, but A sends to R1 first (i.e., A is misconfigured)

Redirect Message Format

- 3 addresses needed
 - IP address that caused redirect (in "Original IP Datagram" header)
 - IP address of router that sent redirect (in IP header of ICMP Message datagram)
 - correct router IP address (in Redirect message)

Restrictions on Redirection

- Redirect messages sent only by “first hop” router
- No Redirect message if Source Routing Option present
- + a few more restrictions (not covered here)

#4 Congestion and Datagram Flow Control

- IP is connectionless
 - does not reserve buffer space or bandwidth
 - potential for congestion, resulting in packet dropping by routers
- ICMP Source Quench message was used to report congestion to original source
 - a host receiving this message is expected to slow down
 - no ICMP message exists to reverse the effect of a source quench

#4 Congestion and Datagram Flow Control (cont’d)

- Not used any more
 - tends to create rather than solve congestion (why?)
 - congestion control in the Internet is now done mostly in the transport layer

#5 “Parameter Problem” Message

- Some error was detected in the IP header
- Pointer indicates byte offset from start of IP header to the “offending” parameter

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>ICMP Message Checksum</th>
<th>Pointer</th>
<th>ICMP Data (Original IP Header + 8 bytes datagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Data</td>
</tr>
</tbody>
</table>
A Clever Program: traceroute

- Allows us to see the path taken by the packet
 - why not just use IP record route option?

1. Send UDP datagram with TTL=1
 - first router decrements TTL, notices it is 0, sends ICMP Time Exceeded error message back to sender
 - this error message has IP address of the incoming interface of the router generating the error – now we know the first hop!

2. Now send UDP datagram with TTL=2
 - second router sends back “time exceeded” message, with its IP address

3. Etc...

4. How tell when the destination is reached?
 - the UDP datagram is addressed to an “unlikely” port (>30,000)
 - error message sent back by destination is Destination Unreachable (“port not bound to a service”) ICMP error message

Example Traceroute Output

```
1. > tracert www.netf.org
2. Querying the network with icmp
3. 1.2.3.4
   Time to live is set to 30
   Request timer is 4 seconds
   Querying www.netf.org [130.155.6.72] over a maximum of 30 hops
   1. 127.0.0.1 [127.0.0.1] queried at 0 ms [0.000 ms]
   2. 192.168.0.1 [192.168.0.1] queried at 2 ms [2.000 ms]
   3. 10.0.0.1 [10.0.0.1] queried at 5 ms [5.000 ms]
   4. 192.168.100.1 [192.168.100.1] queried at 8 ms [8.000 ms]
   6. 192.168.300.1 [192.168.300.1] queried at 14 ms [14.000 ms]
   7. 192.168.400.1 [192.168.400.1] queried at 17 ms [17.000 ms]
   8. 192.168.500.1 [192.168.500.1] queried at 20 ms [20.000 ms]
   9. 192.168.600.1 [192.168.600.1] queried at 23 ms [23.000 ms]
   10. 192.168.700.1 [192.168.700.1] queried at 26 ms [26.000 ms]
   11. 192.168.800.1 [192.168.800.1] queried at 29 ms [29.000 ms]
   12. 192.168.900.1 [192.168.900.1] queried at 32 ms [32.000 ms]
   13. 192.168.1000.1 [192.168.1000.1] queried at 35 ms [35.000 ms]
   14. 192.168.1100.1 [192.168.1100.1] queried at 38 ms [38.000 ms]
   15. 192.168.1200.1 [192.168.1200.1] queried at 41 ms [41.000 ms]
   16. 192.168.1300.1 [192.168.1300.1] queried at 44 ms [44.000 ms]
   17. 192.168.1400.1 [192.168.1400.1] queried at 47 ms [47.000 ms]
   18. 192.168.1500.1 [192.168.1500.1] queried at 50 ms [50.000 ms]
   19. www.netf.org [130.155.6.72] queried at 53 ms [53.000 ms]

Trace complete.
```

Example Traceroute Output

- “tracert” on Windows machines

QUERYING THE NETWORK WITH ICMP

#1 Echo Request and Reply Messages

- Used to see if destination interface is reachable and functioning

```
Type 8 or 0  Code 0  ICMP Message Checksum
Identifier  Sequence Number
Data
```

- Echo Request
 - Contains Identifier and Sequence Numbers to help match Replies with Requests

- Echo Reply
 - is not mandated! reasons for not sending Echo Reply?
 - data sent by Request must be returned in Reply

Program Using Echo Request: ping

- Even if you can’t ping a host, it might be reachable (i.e., ping is disabled on that host but other services are not)

- Identifier = process number of application sending the ping

- Sequence Number starts at 0 and is incremented by each successive Request
 - can tell if replies are missing, duplicated, or reordered

- Round-trip time can be calculated
 - client puts sending time into Request, subtracts from receiving time when Reply comes back
ping Example

```plaintext
ping -s kronos.csc.ncsu.edu
Pinging kronos.csc.ncsu.edu [130.207.8.17] with 56 bytes of data:
64 bytes from kronos.csc.ncsu.edu [130.207.8.17]: icmp_seq=0 time=47 ms
64 bytes from kronos.csc.ncsu.edu [130.207.8.17]: icmp_seq=2 time=47 ms
64 bytes from kronos.csc.ncsu.edu [130.207.8.17]: icmp_seq=3 time=48 ms
64 bytes from kronos.csc.ncsu.edu [130.207.8.17]: icmp_seq=4 time=38 ms
```

Clock Synchronization

- Each machine maintains its own notion of the current time
 - clocks that differ widely can confuse users of distributed system software
- To synchronize clocks, you need an estimate of round-trip delay
 - simplest technique: ICMP Timestamp Request & Reply messages

Clock Synchronization (cont’d)

- Reported in milliseconds since midnight, coordinated universal time (UTC)
- Sending time = request received – request transmitted
- Receiving time = response received – reply transmitted
- RTT = Sending time + Receiving time
 - not affected by synchronization problems (why not?)

#3 Router Discovery (RFC 1256)

- Routers advertise their presence to hosts
 - using either limited broadcast, or a special multicast address
- Preference level indicates the “desirability” as a default gateway
- Router Advertisement message

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>ICMP Message Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

#2 Timestamp Request/Reply Messages

- Reported in milliseconds since midnight, coordinated universal time (UTC)
- Sending time = request received – request transmitted
- Receiving time = response received – reply transmitted
- RTT = Sending time + Receiving time
 - not affected by synchronization problems (why not?)

RTT Estimation Problems

- Accurate estimation of round-trip delay can be difficult
 - round-trip delays over Internet may have high variance
 - datagrams can be dropped, delivered out of order \(\rightarrow \) taking many measurements may not guarantee consistency
- Alternative 1: Network Time Protocol (RFC 1305)
 - much more sophisticated (and complicated)
 - ms accuracy in LAN/WAN
- Alternative 2: GPS receivers at every node
 - µs accuracy, but cost and other limitations?

#2 Timestamp Request/Reply Messages (cont’d)

- Reported in milliseconds since midnight, coordinated universal time (UTC)
- Sending time = request received – request transmitted
- Receiving time = response received – reply transmitted
- RTT = Sending time + Receiving time
 - not affected by synchronization problems (why not?)

#3 Router Discovery (RFC 1256)

- Routers advertise their presence to hosts
 - using either limited broadcast, or a special multicast address
- Preference level indicates the “desirability” as a default gateway
- Router Advertisement message

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>ICMP Message Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
#3 Router Discovery (RFC 1256) (cont’d)

- Does not indicate what route a host should use to reach a specific destination!

- Routers periodically broadcast (or multicast) this information
 - time between advertisements roughly every 10 minutes
 - default lifetime is 30 minutes
 - disabling a router interface: advertise with a lifetime of 0

- Hosts can request this information
 - on bootup, host broadcasts a Router Solicitation message

#4 Address Mask Request / Reply (RFC 950)

- Subnet masks needed for classless addressing / routing (we will discuss this later)

- Host sends Subnet Mask Request to its gateway

- ICMP Subnet Mask Reply message contains the 32 bit mask for the subnet from which the request was received

```
<table>
<thead>
<tr>
<th>Type (0-30)</th>
<th>Code (0-15)</th>
<th>Description</th>
<th>Query / Error</th>
<th>Result / Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>Source quench</td>
<td>E</td>
<td>reduction in TCP send rate</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Redirect for host</td>
<td>E</td>
<td>updates routing table</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Echo request</td>
<td>Q</td>
<td>send a reply</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Router advertisement</td>
<td>R</td>
<td>updates routing table</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Router solicitation</td>
<td>Q</td>
<td>send a advertisement</td>
</tr>
</tbody>
</table>
```

Processing of ICMP Messages

- ICMP covers a wide range of conditions

- Each message handled differently, e.g…
 - ignored (source quench to UDP)
 - handled by kernel (redirect, source quench to TCP)
 - passed to user process (time exceeded, echo/timestamp reply)
 - discarded (if no user processes have registered with the kernel to receive ICMP messages)
 - …

Processing of ICMP Messages (cont’d)

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
<th>Query / Error</th>
<th>Result / Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Echo reply</td>
<td>R</td>
<td>(used by ping)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Network unreachable</td>
<td>E</td>
<td>application request fails</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Host unreachable</td>
<td>E</td>
<td>application request fails</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Protocol unreachable</td>
<td>E</td>
<td>application request fails</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Fragmentation needed but DF Flag set</td>
<td>E</td>
<td>reduce packet size</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Source route failed</td>
<td>E</td>
<td>respectively route</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Other reasons</td>
<td>E</td>
<td>-</td>
</tr>
</tbody>
</table>
```
Processing of ICMP Messages (cont'd)

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
<th>Q / R / E</th>
<th>Result / Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0</td>
<td>Time exceeded (TTL=0)</td>
<td>E</td>
<td>application request fails</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>IP header bad</td>
<td>E</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Timestamp request</td>
<td>Q</td>
<td>send a reply</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>Timestamp reply</td>
<td>R</td>
<td>application calculates RTT</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>Address mask request</td>
<td>Q</td>
<td>send a reply</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>Address mask reply</td>
<td>R</td>
<td>update mask for interface</td>
</tr>
</tbody>
</table>

Summary

1. ICMP is a “swiss army knife” for lots of problems and small functions
 - common protocol for reporting error conditions
 - also used to query network conditions
2. Some older ICMP functions have been superseded by more powerful, and specialized, protocols
3. ICMP continues to be extended for new purposes

Next Lecture

- User Datagram Protocol (UDP)