Announcements

I. HW5 will be online today – CIDR, subnets, routing
 • due in one week
II. Correction to calendar!

Today’s Lecture

I. Multicasting Overview
II. IGMPv3
III. Multicast Datagram Forwarding

Multicasting Overview

- Simplest case: single source, single destination
- Router just looks up destination address, decides how to forward

- One source, \(m < n \) destinations
- Source sends \(m \) datagram copies, each with one destination
Multicast (With Sharing)

- One source, \(m < n \) destinations
- Source sends 1 datagram copy, with a multicast destination address

Broadcast (With Sharing)

- One source, \(n \) destinations
- Source sends 1 datagram copy, with a broadcast destination address

Example Multicast Applications

- Streaming video on-demand
- Radio stations
- Stock quotes
- Multi-user games
- File sharing (e.g. P2P)
- Service location
- ...

Possible Approaches to Multicasting

- Source simply unicasts data to each of the receivers
 - advantages?
- Source broadcasts to everyone, receivers accept content if they are interested in it
 - advantages?
- Source unicasts data, and the network replicates and forwards it to the multicast group
 - advantages?

Some Challenges

- Non-trivial modifications to routing protocols (and routers)
- Potential for abuse (spammers!)
- Dynamic multicast group membership
- Multicast address allocation and discovery
- Heterogeneity in receiver and network bandwidths
- Simultaneous, reliable transmission (flow and congestion control)

Receiver-Oriented Multicast

- Hosts decide whether they wish to join (become a member of) the multicast group
 - may join and leave dynamically
 - i.e., subscribe to the service
- Groups may be static or dynamic
 - how find out what multicast groups exist?
 - how find out what multicast address is being used?
- Source does not need to know who the members are, but routers do
IPv4 Multicast Addresses

- Class D addresses (224.0.0.0 to 239.255.255.255)
- A part of this range is reserved for control messages, e.g.,
 - 224.0.0.1 = "All systems on this subnet"
 - 224.0.0.2 = "All routers on this subnet"
 - 224.2.0.0/16 = SAP / SDP messages

IPv4 Multicast Addresses (cont’d)

- Multicast addresses may only be used as destination addresses
- No ICMP error messages can be generated for multicast datagrams

Ethernet Multicast Addresses

- Ethernet multicast addresses have a 01 (hex) in the most significant 8 bits of the address
- Mapping is not unique
 - more than one IPv4 multicast address may map to the same Ethernet multicast address
 - means receivers have to check whether they are supposed to get this datagram

DYNAMIC GROUP MEMBERSHIP WITH IGMPv3

IGMPv3 (RFC 3376)

- Purpose: notify routers which hosts (on a directly-attached LAN) are interested in receiving data sent to a specific multicast address

IGMPv3 Phases

- Phase 1 (Host join)
 - send IGMP Request to an IPv4 multicast address, received (and noted) by directly attached routers
 - these routers can notify other routers in the network (not part of IGMP)
- Phase 2 (maintenance)
 - router periodically multicasts IGMP Query to all hosts on the local network to determine whether any hosts are still members of any MC groups
 - if no host replies, router notifies other routers (not part of IGMP)
IGMPv3 Messages: Query

- Routers multicast IGMP query to all hosts (224.0.0.1) once every 125 seconds
 - general (any group)
 - group-specific

<table>
<thead>
<tr>
<th>Type</th>
<th>Response Time</th>
<th>Checksum</th>
<th>Multicast Group Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11=Query</td>
<td>Maximum time to wait until responding to the query</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IGMPv3 Messages: Report

- Hosts listen for responses from other hosts in the same group before responding
 - to suppress duplicate response traffic

<table>
<thead>
<tr>
<th>Type</th>
<th>Not used</th>
<th>Checksum</th>
<th>Multicast Group Address Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x12=Report</td>
<td>Maximum time to wait until responding to a query</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IGMPv3 Messages (cont’d)

- A host leaving a multicast group sends an explicit Leave message if it previously responded to a IGMP query for that group

Multicasting Over the Internet

- Source must establish multicast distribution tree connecting it to destinations in the MC group
- Many ways for doing this, none widely adopted
- A basic idea: reverse path forwarding (RPF)
 - from each destination, follow (in reverse) the forwarding path from that destination to the source
 - merge paths when possible

Example of RPF
Multicast Forwarding

- A host must send the datagram to a multicast router
 - multicast routers recognize multicast addresses and forward datagram out multiple interfaces
 - do not send a copy along a path if that path does not lead to a member of the group

Summary

- Multicasting is intended to be more efficient than multiple unicasts
 - requires support from the network for replicating and forwarding datagrams
- IGMP informs routers of what multicast addresses the hosts on a LAN are subscribed to
- Multicast adds substantial complexity and is not widely used in the Internet despite 15 years of effort, many standards
 - why not?

Next Lecture

- Dynamic Host Configuration Protocol (DHCP)