TCP, Lecture 4

Internet Protocols
CSC/ECE 573
Fall, 2005
N. C. State University

FAST RETRANSMIT

AND RECOVERY

3 duplicate ACKs for
segment S1, probably
means segment S2
was lost

Today’s Lecture

I. Congestion Control: Fast Retransmit and
Recovery

Il. Silly Windows
lll. Urgent Data
IV. (Some) TCP Options

V. Router Queue Management

Fast Retransmit and Recovery (RFC 2581)

* When an out-of-order segment arrives at the
receiver...

— receiver will generate an ACK with the same sequence
number as the previous ACK; called a duplicate ACK
— indicates that some data is getting through to receiver

* Receipt of 3 duplicate ACKs in a row for segment
Jis a strong indication that segment j+7 was lost
— immediately retransmit without waiting for timer to
expire: fast retransmit

— then enter congestion avoidance phase directly (i.e.,
bypass slow start): fast recovery

Fast Retransmission and Recovery

+ Sender actions (after receiving 3 duplicate ACK)

— retransmit: retransmit segment j+1 without waiting for
timeout

— recover:
ssthresh € MAX(2, %2* cwnd)
cwnd €& ssthresh +3
» Each time another duplicate ACK arrives...
- cwnd € cwnd + 1 /*haven't started congestion avoidance *

— transmit another packet (if allowed)

* When ACK for a retransmitted segment arrives...

- cwnd € ssthresh /*now in congestion avoidance */

Behavior: Slow Start+Congestion

18 1
16
14 1
12
window 10 7
(insegs) 8 -
6
44
2 4

0 T T T TS T T T T T T T T T T T T T e ey

N/
v
6
9

%

eau, U. Utah

Behavior: SS + CA + FRXMIT + Fast Recovery

16 1
14 A
12
window 107
(insegs) ¢ |
64
44
24

A I T I R IS W SN 3
round-trip times

Source: Jay Lepreau, U. Utah

“Silly Window” Syndrome (RFC 813)
» A serious problem in sliding window operation

+ Causes
1. sending application program creates data slowly
2. receiving application program consumes data slowly

* In either case, data may be sentin small
segments

— inefficient use of bandwidth

— increased processing by TCP

Behavior: SS + CA + Fast Retransmit

16
14 4
12 A
window 107
(insegs) s
64
4
24

“SILLY” WINDOWS

“Silly Windows” Caused by Receiver

—

Really slow receiver!
— —
—

from other end of connection
—_——

“Silly Window” Solution

 Clark's solution: do not send window
advertisements for 1 byte

* Instead, advertise a window size of zero and wait
until

1.there is space for a maximum sized segment of data,
or

2.the receive buffer is half-empty

* Then advertise this new Window Size

URGENT AND PUSH FLAGS

Urgent Data (cont’'d)

» Marking urgency: set the URG Flag and set
Urgent Pointer to indicate location of the
control information

+ TCP notifies application “urgent data” has been
received

— processing is application specific

01234 8 16

Combining Solutions

» Nagle's algorithm: sender accumulates data until
“enough” data to send

+ Clark's solution: receiver consumes data until
“enough” space available to advertise

» These solutions are complementary and can be
used together

Urgent Data

» TCP does not provide a separate “control”
channel for applications

+ Examples of control
— ftp: “stop sending data”
— telnet: interrupt running process, or suspend the telnet
session
» Choices

— use a second (companion) TCP connection for control,
or...

— insert control into data channel and mark as urgent

The PSH Flag

* Purposes

— Sender: forces TCP to send a segment without waiting
for further data to be generated

— Receiver: forces TCP to notify the application that data
is waiting to be processed

» Example: after each command typed, during an
interactive application

+ Prevents TCP buffering (for efficiency) from adding
undesirable delivery latency

(SOME) TCP OPTIONS

#1. MSS Option (cont’d)

2

] 8 16 3
| Code: 2 | Length: 4 | Maximum segment size |

(a) Maximum segment size option

Ethernet

MTU=1500
SYN <mss=1460>

E sup (")
MTU=296 __J

SYN <mss=256>

(b) Use of maximum segment size option

#2. Window Scale Option (cont’'d)

+ Scale factor is the exponent of a power-of-two
increase in the window size

— “effective” window size =
Window Size x 2window-scale-factor
* Maximum value = 14
— max effective window size = (216-1) " 214 (= 230)
— At RTT=100ms, max receiver bandwidth = 10 GB/s

01234 8 16 24 31

#1. MSS Option (cont’d)

* MSS = Maximum Segment Size

— defines the maximum segment size the receiver is
willing to accept

— MSS must be = receiver interface MTU - 40 bytes
* Declared during connection establishment phase
(i.e., in SYN segments)

— cannot be specified or changed during data transfer

#2. Window Scale Option (RFC 1323)

* Reminder: optimal Window Size =
RTT * receiver bandwidth

+ For RTT = 100ms, and bandwidth > 640 KB/s,
optimal value is larger than maximum Window
Size (64KB)

+ Solution: negotiate (during connection
establishment only) a scale factor that increases
possible window sizes

— may have different scale factors in the two directions

#3. Timestamp Option

» Without timestamps, RTT (in many
implementations) is calculated once every window

— OK for small (e.g., < 8 segment) windows
— but larger windows require better RTT calculations

+ Sender puts timestamp option in segment; option
is “reflected” by receiver in the acknowledgment
— sender can compute RTT for each received ACK

01234 8 16 24 31

#4. Selective Acknowledgments Option
R 018
+ Selective Acknowledgments: indicate specifically
what non-contiguous blocks of data have been
received

 Option format:

01234 8 16 24 31

#4. Selective Acknowledgments (cont’d)

» Can result in better throughput when losses are
common

» Requires negotiating “SACK-permission” during
connection establishment

Packet Dropping Policies at Routers

+ Incoming packets at a router, after the forwarding
decision, are queued for output

+ During congestion, something has to give!

— “Drop Tail” policy: drop an incoming packet if the queue
is already full

N
I<)

A

discarding arriving

packet

Probability of
o

Max queue length
Length of packet queue

#4. Selective Acknowledgments (cont’d)

* Receiver notifies sender that non-contiguous
blocks of data have been received
— at most 4 blocks can be specified

— should be included in all ACK=1 segments that do not
acknowledge the highest contiguous sequence number
received

— report the most recent non-contiguous blocks

+ Sender will not retransmit selectively-
acknowledged segments

ROUTER QUEUE MANAGEMENT

RED (RFC 2309)

* Another way: drop the arriving packet randomly,
with probability derived from the queue length:
RED (random early discard) policy

— queue length used is an exp. weighted moving average

» Parameters
— min and max thresholds per output queue

N
o

discarding arriving

packet

Probability of
o

min max -

Average length of packet queue

* RED considerably more complex than drop-tail

+ Claim: RED results in shorter average queue
lengths (thus, lower latency)

+ Drop-tail synchronizes losses across flows

— i.e., they all congest at same time, all back off at same
time, then all congest at same time, ...

+ Claim: drop-tail unfair to bursty traffic flows

+ Claim: RED gives significantly better throughput

r<aFast Retransmit and Recovery provide improved
“steady state” behavior

Bxa"Silly” Windows leads to inefficient data transfer

Ekaldeas about congestion control improvements are
never-ending ©

E}TCP options provide useful extensions; MSS is
universally used

B<«@Active queue management has been widely
promoted as providing better throughput and
fairness

» The Sockets Network Programming API

