
1

TCP, Lecture 4

Internet Protocols

CSC / ECE 573

Fall, 2005

N. C. State University

copyright 2005 Douglas S. Reeves 2

Today’s Lecture

I. Congestion Control: Fast Retransmit and
Recovery

II. Silly Windows

III. Urgent Data

IV. (Some) TCP Options

V. Router Queue Management

FAST RETRANSMIT
AND RECOVERY

copyright 2005 Douglas S. Reeves 4

Fast Retransmit and Recovery (RFC 2581)

• When an out-of-order segment arrives at the
receiver…
– receiver will generate an ACK with the same sequence

number as the previous ACK; called a duplicate ACK

– indicates that some data is getting through to receiver

• Receipt of 3 duplicate ACKs in a row for segment
j is a strong indication that segment j+1 was lost
– immediately retransmit without waiting for timer to

expire: fast retransmit
– then enter congestion avoidance phase directly (i.e.,

bypass slow start): fast recovery

copyright 2005 Douglas S. Reeves 5

Example

B acks S1A sends S5

B acks S1A sends S4

B acks S1A sends S3

(lost in transmission)A sends S2

B acks S1A sends S1

3 duplicate ACKs for
segment S1, probably
means segment S2
was lost

copyright 2005 Douglas S. Reeves 6

Fast Retransmission and Recovery

• Sender actions (after receiving 3rd duplicate ACK)
– retransmit: retransmit segment j+1 without waiting for

timeout
– recover:
 ssthresh  MAX(2, ½ * cwnd)
 cwnd  ssthresh + 3

• Each time another duplicate ACK arrives…
– cwnd  cwnd + 1 /* haven’t started congestion avoidance */

– transmit another packet (if allowed)

• When ACK for a retransmitted segment arrives…
– cwnd  ssthresh /* now in congestion avoidance */

2

copyright 2005 Douglas S. Reeves 7Source: Jay Lepreau, U. Utah

Behavior: Slow Start+Congestion
Avoidance

copyright 2005 Douglas S. Reeves 8

Source: Jay Lepreau, U. Utah

Source: Jay Lepreau, U. Utah

Behavior: SS + CA + Fast Retransmit

copyright 2005 Douglas S. Reeves 9Source: Jay Lepreau, U. Utah

Behavior: SS + CA + FRXMIT + Fast Recovery

“SILLY” WINDOWS

copyright 2005 Douglas S. Reeves 11

“Silly Window” Syndrome (RFC 813)

• A serious problem in sliding window operation

• Causes
1. sending application program creates data slowly

2. receiving application program consumes data slowly

• In either case, data may be sent in small
segments
– inefficient use of bandwidth

– increased processing by TCP

copyright 2005 Douglas S. Reeves 12

“Silly Windows” Caused by Receiver

Receiver Buffer is full

Receiving application
processes one byte of data

Sends window update (ACK)
allowing one more byte to be sent

New data (one byte) arrives

to other end of connection

from other end of connection

Really slow receiver!

3

copyright 2005 Douglas S. Reeves 13

“Silly Window” Solution
• Clark's solution: do not send window

advertisements for 1 byte

• Instead, advertise a window size of zero and wait
until
1. there is space for a maximum sized segment of data,

or
2. the receive buffer is half-empty

• Then advertise this new Window Size

copyright 2005 Douglas S. Reeves 14

Combining Solutions
• Nagle's algorithm: sender accumulates data until

“enough” data to send

• Clark's solution: receiver consumes data until
“enough” space available to advertise

• These solutions are complementary and can be
used together

URGENT AND PUSH FLAGS

copyright 2005 Douglas S. Reeves 16

Urgent Data

• TCP does not provide a separate “control”
channel for applications

• Examples of control
– ftp: “stop sending data”

– telnet: interrupt running process, or suspend the telnet
session

• Choices
– use a second (companion) TCP connection for control,

or…

– insert control into data channel and mark as urgent

copyright 2005 Douglas S. Reeves 17

Urgent Data (cont’d)

• Marking urgency: set the URG Flag and set
Urgent Pointer to indicate location of the
control information

• TCP notifies application “urgent data” has been
received
– processing is application specific

0 1 2 3 4 8 16 24 31

Urgent Pointer

Payload

copyright 2005 Douglas S. Reeves 18

The PSH Flag

• Purposes
– Sender: forces TCP to send a segment without waiting

for further data to be generated
– Receiver: forces TCP to notify the application that data

is waiting to be processed

• Example: after each command typed, during an
interactive application

• Prevents TCP buffering (for efficiency) from adding
undesirable delivery latency

4

(SOME) TCP OPTIONS

copyright 2005 Douglas S. Reeves 20

#1. MSS Option (cont’d)

• MSS = Maximum Segment Size
– defines the maximum segment size the receiver is

willing to accept

– MSS must be ≤ receiver interface MTU - 40 bytes

• Declared during connection establishment phase
(i.e., in SYN segments)
– cannot be specified or changed during data transfer

copyright 2005 Douglas S. Reeves 21

#1. MSS Option (cont’d)

copyright 2005 Douglas S. Reeves 22

#2. Window Scale Option (RFC 1323)

• Reminder: optimal Window Size =
RTT * receiver bandwidth

• For RTT = 100ms, and bandwidth > 640 KB/s,
optimal value is larger than maximum Window
Size (64KB)

• Solution: negotiate (during connection
establishment only) a scale factor that increases
possible window sizes
– may have different scale factors in the two directions

copyright 2005 Douglas S. Reeves 23

#2. Window Scale Option (cont’d)

• Scale factor is the exponent of a power-of-two
increase in the window size
– “effective” window size =
Window Size × 2window-scale-factor

• Maximum value = 14
– max effective window size = (216 -1) * 214 (≈ 230)

– At RTT=100ms, max receiver bandwidth = 10 GB/s

0 1 2 3 4 8 16 24 31
Window Scale

FactorLength=3Kind=3

copyright 2005 Douglas S. Reeves 24

#3. Timestamp Option
• Without timestamps, RTT (in many

implementations) is calculated once every window
– OK for small (e.g., < 8 segment) windows
– but larger windows require better RTT calculations

• Sender puts timestamp option in segment; option
is “reflected” by receiver in the acknowledgment
– sender can compute RTT for each received ACK

0 1 2 3 4 8 16 24 31

Length=10Kind=8

Timestamp Sent

Timestamp Reply

5

copyright 2005 Douglas S. Reeves 25

#4. Selective Acknowledgments Option
(RFC 2018)

• Selective Acknowledgments: indicate specifically
what non-contiguous blocks of data have been
received

• Option format:
0 1 2 3 4 8 16 24 31

Left Edge of 1st Received Block

Type Length

Right Edge of 1st Received Block

Left Edge of 2nd Received Block

Right Edge of 2nd Received Block

etc.
copyright 2005 Douglas S. Reeves 26

#4. Selective Acknowledgments (cont’d)

• Receiver notifies sender that non-contiguous
blocks of data have been received
– at most 4 blocks can be specified
– should be included in all ACK=1 segments that do not

acknowledge the highest contiguous sequence number
received

– report the most recent non-contiguous blocks

• Sender will not retransmit selectively-
acknowledged segments

copyright 2005 Douglas S. Reeves 27

#4. Selective Acknowledgments (cont’d)

• Can result in better throughput when losses are
common

• Requires negotiating “SACK-permission” during
connection establishment ROUTER QUEUE MANAGEMENT

copyright 2005 Douglas S. Reeves 29

Packet Dropping Policies at Routers

• Incoming packets at a router, after the forwarding
decision, are queued for output

• During congestion, something has to give!
– “Drop Tail” policy: drop an incoming packet if the queue

is already full

Pr
ob

ab
ilit

y
of

di
sc

ar
di

ng
 a

rri
vi

ng
pa

ck
et

Length of packet queue

0

1.0

Max queue length

copyright 2005 Douglas S. Reeves 30

RED (RFC 2309)

• Another way: drop the arriving packet randomly,
with probability derived from the queue length:
RED (random early discard) policy
– queue length used is an exp. weighted moving average

• Parameters
– min and max thresholds per output queue

6

copyright 2005 Douglas S. Reeves 31

RED (cont’d)

Pr
ob

ab
ilit

y
of

di
sc

ar
di

ng
 a

rri
vi

ng
pa

ck
et

Average length of packet queue

0

1.0

maxmin

copyright 2005 Douglas S. Reeves 32

RED Evaluation

• RED considerably more complex than drop-tail

• Claim: RED results in shorter average queue
lengths (thus, lower latency)

• Drop-tail synchronizes losses across flows
– i.e., they all congest at same time, all back off at same

time, then all congest at same time, …

• Claim: drop-tail unfair to bursty traffic flows

• Claim: RED gives significantly better throughput

copyright 2005 Douglas S. Reeves 33

Summary
Fast Retransmit and Recovery provide improved

“steady state” behavior

“Silly” Windows leads to inefficient data transfer

Ideas about congestion control improvements are
never-ending 

TCP options provide useful extensions; MSS is
universally used

Active queue management has been widely
promoted as providing better throughput and
fairness

copyright 2005 Douglas S. Reeves 34

Next Lecture

• The Sockets Network Programming API

