
ABSTRACT

MURTHY, PRASHANT. GTKgREP - Design and Implementation of a Gnutella-based

Reputation Management System. (Under the direction of Dr. Douglas Reeves).

Peer to peer (P2P) networks have introduced a new paradigm in content distribu-

tion. Such systems have shifted the paradigm from a client-server model into a client-client

model. The tremendous success of such systems has proven that purely distributed search

systems are feasible and that they may change the way we interact on the Internet. Most

P2P protocols have been designed with minimum or no emphasis on security – Gnutella

being one such open protocol standard. In this work, we focus on providing security over

Gnutella by establishing trust between the entities (peers) in a P2P network using reputa-

tions and by ensuring integrity, authentication and non-repudiation of messages exchanged.

Reputation systems collect, distribute and aggregate feedback about past behavior of the

participants. Such systems help in establishing trust amongst strangers, detecting misbe-

having nodes and isolating them. In this work, we analyze some existing reputation-based

protocols in P2P networks. Among these protocols, we choose two approaches that are

more specific and relevant to P2P networks. We compare these two protocols, namely,

P2PRep and RCert in terms of security and performance. While P2PRep uses a broad-

cast polling mechanism and client-side storage to manage reputations, RCert uses unicast

messages and server-side (local) storage of reputation content. Based on an analysis of the

two approaches, we choose to enhance RCert. We identify the shortcomings and vulnera-

bilities of this protocol and propose an extension to RCert. We then provide the details of

the design and implementation of our enhanced protocol – GTKgREP on Gtk-Gnutella, a

unix-based Gnutella servent. We provide an assessment of the overheads associated with

this protocol.

GTKgREP - Design and Implementation of a Gnutella-based Reputation
Management System

by

Prashant Murthy

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial satisfaction of the

requirements for the Degree of

Master of Science

Department of Computer Science

Raleigh

2003

Approved By:

Dr. Peng Ning Dr. Munindar Singh

Dr. Douglas Reeves
Chair of Advisory Committee

ii

To my parents,

K S Keshava Murthy,

Lakshmi Murthy

and my sister and brother-in-law,

Sheetal Murthy, Suresh Byagathvalli

iii

Biography

Prashant Murthy was born in Bombay, India, in 1979. He received his Bachelor’s degree

in Computer Science from Birla Institute of Technology and Science, India in 2000. From

June 2000 to June 2001, he worked for Hughes Software Systems and Cisco Systems as a

software engineer in the VoIP group. Since 2001, he has been a Masters student in the

Department of Computer Science at North Carolina State University.

iv

Acknowledgements

I acknowledge the efforts of Dr. Douglas Reeves, my thesis advisor, in providing me direction

and guidance when required. He helped me remain focused and persistent. Working with

him has been a pleasure and honor.

I thank Dr. Singh and Dr. Ning for serving on my thesis advisory committee and

providing me with invaluable advice.

I thank my family for encouraging me to take up graduate studies, especially my

sister. In this endeavor, they have put in just as much effort as me.

Among my pals, I thank Koundi for accelerating my learning curve with Latex to

get me started on writing my thesis draft and Pushkin for patiently proof reading the final

draft. I would like to thank my other roommates Bhasker and Naveen for everything !

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Reputation Systems . 4

2 Related Work 7
2.1 Architectures in P2P Networks . 7

2.1.1 Centralized Networks . 8
2.1.2 Decentralized (Pure P2P) Networks 8
2.1.3 Hybrid Networks . 8

2.2 Reputation Management . 10
2.2.1 Centralized Approaches . 11
2.2.2 Decentralized Approaches . 11

3 Review of Gnutella Design and Implementation 15
3.1 Operation . 16
3.2 Protocol Description . 16
3.3 Protocol Messages . 17

3.3.1 Message Header . 18
3.3.2 Message Types . 19

3.4 GGEP Extensions . 21
3.5 Gtk-Gnutella . 22

3.5.1 Features . 22
3.5.2 Design . 24

4 Review and Analysis of RCert Reputation Management Protocol 25
4.1 Introduction . 25
4.2 Overview . 26

4.2.1 Rating Certificates (RCert) . 27
4.2.2 Recommendations . 28

vi

4.3 Protocol description . 28
4.3.1 Discussion . 32

4.4 Protocol enhancements . 34
4.4.1 Message Extensions . 34
4.4.2 Security Extensions . 36

4.5 Security analysis . 39
4.5.1 Integrity and Non-repudiation . 40
4.5.2 Authentication of messages . 40
4.5.3 Validity of RCerts . 40
4.5.4 Misbehaving entities . 40
4.5.5 Collusions . 42

4.6 Extended RCert vs P2PRep/XRep . 43
4.6.1 Security Analysis of P2PRep/XRep 43
4.6.2 Comparison of the two approaches 44

5 Design and Implementation of a Gnutella-based Reputation Management
System 47
5.1 GTKgREP Subsystems . 48

5.1.1 Message/Routing Subsystem . 48
5.1.2 Connection Manager . 48
5.1.3 Resource Manager . 49
5.1.4 GUI Subsystem . 50
5.1.5 HTTP Subsystem . 50
5.1.6 Property and Stats Database . 50
5.1.7 PKI Manager . 50
5.1.8 GTKgREP Reputation Subsystem 51
5.1.9 GTKgREP Reputation Database . 51

5.2 Design Issues . 51
5.2.1 Stateless Protocol . 51
5.2.2 Gui-Core Dependency . 52
5.2.3 Non-persistent GUID . 52
5.2.4 Broadcast searches . 52
5.2.5 Size of search messages . 52

5.3 Message Formats . 53
5.4 State Machine . 55
5.5 Flow of events . 55
5.6 Test Scenarios . 58
5.7 Assessment of overheads . 61

5.7.1 Bandwidth Usage . 61
5.7.2 Round Trip Delays . 62
5.7.3 Cryptographic Statistics . 63

6 Conclusion and Future Work 65
6.1 Future Work . 66

vii

Bibliography 67

A Data Structures in GTKgREP 71

viii

List of Figures

2.1 Architectures in P2P Networks . 9

3.1 Client-Server handshake in Gnutella . 17

4.1 RCert Protocol Message Flow . 29
4.2 Protocol behavior with offline recommenders 31
4.3 Protocol behavior when most-recent recommender is offline 33
4.4 RCert Protocol Message Flow (Modified) 35
4.5 Message Authentication in Extended RCert 37
4.6 Selective Certificate Deletions . 39
4.7 Onion Signatures in RCert . 39

5.1 GTKgREP Components . 49
5.2 GTKgREP State Machine . 56
5.3 GTKgREP Sequence Diagram . 57
5.4 P2P Test Bed . 59
5.5 Certificate Bandwidth vs Number of providers and recommenders 61
5.6 Total Bandwidth Consumption . 62

ix

List of Tables

3.1 Gnutella Message Header . 18
3.2 Gnutella Message Types . 19
3.3 Query Message Format . 20
3.4 Query Hit Message Format . 20
3.5 Result Set Structure . 20
3.6 Push Message Format . 21
3.7 GGEP Extension Format . 21

4.1 Rating Certificates . 27
4.2 RCert Header Format . 27
4.3 RCert Unit . 28
4.4 Recommendations . 28

5.1 GTKgREP Request Message Format . 53
5.2 GTKgREP Message Formats . 54
5.3 Number of Signatures Computed/Verified 63
5.4 Total Signatures and Hashes . 63

1

Chapter 1

Introduction

Peer-to-peer networks (P2P) have become a very popular medium of content dis-

tribution in the past few years. In such networks, computer resources and services are

exchanged directly between systems. Beginning with the popular Napster [9] phenomenon

in the late 1990s, the popularity of P2P has dramatically increased the volume of data

transferred between Internet users. Recent studies concluded that the file sharing activity

on P2P networks accounts for up to 60% of the Internet traffic on any given service provider

network [26].

P2P Networks provide an alternate mechanism to client/server paradigms for shar-

ing resources. Existing P2P systems ([4], [2], [8], [9]) have been driving a major paradigm

shift in the era of distributed computing. Many factors have fostered the recent explosive

growth of such networks: low cost attributed to the fact that P2P networks may not require

any high-performance centralized servers, high availability of large numbers of computing

and storage resources and increased network connectivity.

Many characteristics of P2P networks have made it popular for resource sharing

applications[38]:

• Ability to operate in a dynamic environment : P2P applications operate in dynamic

environments where hosts may join or leave the network frequently. The network

must achieve flexibility in order to keep operating transparently despite a constantly

changing set of resources.

2

• Performance and Scalability : P2P paradigm shows its full potential only on large-

scale deployments where the limits of the traditional client/server paradigm become

obvious. Moreover, scalability is important as P2P applications exhibit the network

effect [28]: the value of a network to an individual user increases with the total number

of users participating in the network. Ideally, when increasing the number of nodes,

aggregate storage space and file availability should grow linearly, response time should

remain constant, while search throughput should remain high or grow.

• Availability of resources: The same resource may be available at many different nodes

simultaneously, thus providing high availability of these resources.

• No single point of failure: Since P2P networks do not depend on any centralized

infrastructure, there cannot be a common point of failure.

The nodes in P2P networks are termed as servents (or peers) since they act both as

a client and as a server to the network. Content retrieval in P2P networks usually involves

a content search phase and a content download phase. First, the initiator searches for the

desired content in the network. Then, after having discovered a servent sharing the above

content, it establishes a direct connection and transfers the resource from the provider.

Peer-to-peer networks can be broadly classified into two categories: 1. Centralized

networks such as Napster, 2. Decentralized networks such as Gnutella. In the former

approach, content search is facilitated by a central server that maintains file indexes to

resources shared on the network. In the decentralized approach, the entities directly discover

each other by exchanging broadcast messages or by other mechanisms without involving any

central server. More recently, a third class of networks that adopt both approaches have

become prevalent. Networks such as Kazaa [6] distinguish their peers into leaf nodes and

supernodes based on the computation power and bandwidth limitations of the servent. Leaf

nodes (low computation power, low bandwidth) are usually connected only to supernodes

and are not involved in routing P2P traffic. Supernodes are servents that are endowed with

additional responsibilities such as routing, handling requests, etc.

The design objectives of decentralization and availability make P2P applications

very appealing for deployment in large scale networks. However, the open nature of these

networks makes them vulnerable and highly susceptible to security attacks. Some of the

significant security issues have been summarized below:

3

• Secure Routing : Since P2P networks form a virtual network of peers at the applica-

tion layer, a P2P message (or packet) sent by the source node may need to traverse

many peers before reaching the destination. This implies that intermediate peers are

involved in routing packets to the destination peer. Hence, there needs to be a mech-

anism to maintain the authenticity, confidentiality and integrity of messages. There

has been some work on avoiding attacks that prevent correct message delivery in P2P

networks [14].

• Peer Authentication: Since there is no central authority to validate the credentials

of the peers in the network, authentication is a non-trivial issue. Further, the nodes

involved in exchanging resources may never have interacted with each other, thus

making it difficult for them to authenticate each other. This could lead to lack of

accountability of shared content. Thus, the network can be extremely susceptible

to attacks by malicious users who could spread harmful viruses and trojans, or waste

network resources. The Mandragore virus [5] that brought down the Gnutella network

in February 2001 is an example of such an attack.

• Anonymity : Anonymity is a property that allows a user to conceal its identity, while

allowing access to the resources in the network. There have been many proposals

addressing the issue of anonymity in P2P networks [13] [16] [39].

• Accountability : In most P2P networks, peers obtain a unique identity (pseudonym)

to log into the network. However, these pseudonyms may not be persistent, thus

making it difficult to address the problem of accountability of transactions. Most

P2P networks suffer from free-riding [12] – a phenomenon where peers do not share

any resources. It has been shown that almost 70% of Gnutella users share no files,

and 50% of all responses are returned by the top 1% of sharing hosts. Further, nodes

may come online and go offline in very short intervals of time; only a small percentage

of the peers are online for a considerable period of time. All nodes are involved in

routing request packets to the destination nodes, thus demanding cooperation from

all peers.

• Trust Management : Trust plays a central role in many aspects of computing, especially

those related to use of the network. Many of the characteristics of P2P networks make

it very challenging to establish trust among the participating nodes. As described

4

above, there is no central authority to monitor and coordinate activities of all nodes in

the network. The peers are autonomous and may be unreliable and non-cooperating.

There must be a mechanism by which the network is able to distinguish trusted peers

from the malicious peers. Hence, it is very essential to have a system by which peers

are able to trust each other and ensure the authenticity of the shared content. There

have been many different approaches that have been adopted to establish trust in a

network [32] [40]. Reputation-based trust is one specific form of trust management,

which is described in detail in Section 1.1

Thus, peer-to-peer networks are very useful for deployment in large-scale networks.

However, for successful deployment of these networks, the above security issues must

be addressed. Since trust is a fundamental security issue in these networks, it is very

essential to address it and identify solutions to provide the same.

1.1 Reputation Systems

In general, reputation can be defined as the general estimation in which a person

is held by the public. It is the memory and summary of behavior from past transactions.

It describes the popularity of an individual as seen by the other nodes in the network [35].

In the physical world, when we talk about how much we trust someone, we often consider

that person’s reputation. We usually are willing to put great trust in someone whom we

have personally observed to be highly capable and who has a high level of integrity. In the

absence of personal observation, the recommendation of a trusted friend can lead to trust

in someone. Hence, in real life, trust is often increased by establishing positive reputations

and networks for conveying these reputations.

A reputation system collects, distributes and aggregates feedback about past be-

havior of the participants. Reputation systems help in fostering trust amongst strangers

and deter participation by those who are dishonest. Such systems have existed long before

the Internet came into existence. Credit and employment agencies, for example, are indeed

reputation-based systems. An individual with a good credit history (reputation) is able to

receive credits or loans. On the Internet, most online auction portals such as eBay [22] pro-

vide reputations in the form of feedback forums. After completing a transaction, the buyer

and seller have an opportunity to rate each other (1, 0, or -1) and provide comments. Each

5

participant has a running total of the points attached to its identity on the portal. This

information is stored and retrieved for future transactions as necessary. Thus, reputation

systems seek to restore information about the history of transactions with the expectation

that other people will use this as a reference in the future.

The most essential properties that are required for a reputation system at the

minimum are persistence of participating entities, a mechanism for capture and distribu-

tion feedback and storage of cumulative ratings to be made available in the future. Such

reputation systems can be well adapted into peer-to-peer networks where trust amongst

participating nodes is very critical. However, the decentralized property and certain other

characteristics of P2P networks make it challenging to adapt reputation systems directly in

such networks.

In the recent past, there has been some work in establishing trust using reputations

in P2P networks [25] [41] [11] [43] [27] [31] [17] [34], as discussed in Chapter 2. At the

time of this work, there was no reputation-based implementation to realize the practical

deployment of these systems in P2P networks. In this work, we analyze some approaches

that have been proposed to address the problem of reputation based trust management.

Bearing the goals of establishing trust among peers in a secure manner and the perfor-

mance constraints in P2P networks, we identify two protocols more specific and relevant to

P2P networks – RCert and P2PRep. We compare the two approaches in terms of security

and performance (overheads). Based on an analysis of the two approaches, we conclude

that both approaches are very similar in providing the required security functionalities.

However, since the RCert protocol performs better in terms of overheads, we choose to

enhance RCert. We identify the drawbacks and vulnerabilities of this protocol and propose

an extension to RCert. We provide the design of the modified system (GTKgREP) over

an existing decentralized P2P network - Gnutella. We provide the details of the imple-

mentation of GTKgREP that has been built as an extension to Gtk-Gnutella, an existing

GTK-based Gnutella servent. We also demonstrate the impact on the performance in terms

of bandwidth, round-trip time and processing delays due to cryptography.

The rest of this thesis is organized as follows. In the next chapter we briefly

describe the context in which this thesis and other related work is relevant. Chapter 3

describes the Gnutella protocol in detail and the features provided by Gtk-gnutella, an

implementation of Gnutella. In Chapter 4, we describe the RCert protocol in detail, propose

extensions, identify vulnerabilities and propose solutions to safeguard the protocol against

6

these vulnerabilities. In this chapter, we also provide a security analysis of the protocol and

compare this protocol against P2PRep and justify why we chose to implement the RCert

protocol. In Chapter 5, we provide the details of the design and implementation of the

extended RCert protocol over Gtk-Gnutella and provide the results. Chapter 6 concludes

this thesis and discusses possible directions for future research.

7

Chapter 2

Related Work

In this chapter, we provide a brief review of peer-to-peer networks. We describe

the architectures in P2P networks and highlight some of the reputation-based approaches

that have been proposed.

Peer-to-peer networking is the utilization of the relatively powerful computers

(personal computers) that exist at the edge of the Internet for more than just client-based

computing tasks. Such networks provide an alternate mechanism of computing as against

client/server architectures. In addition to the ability to pool together and harness large

amounts of resources, the strengths of existing P2P systems ([4], [2], [8], [9]) include self-

organization, load-balancing, cost-effective infrastructure, adaptation and fault tolerance.

Because of these desirable qualities, many research projects have been focused on under-

standing the issues surrounding these systems and improving their performance [37], [30],

[20].

2.1 Architectures in P2P Networks

Based on the method by which search requests are sent into the network, peer-

to-peer networks can be categorized as Centralized Networks, Decentralized Networks and

Hybrid Networks.

8

2.1.1 Centralized Networks

Such networks make use of a centralized indexing service. Figure 2.1(a) depicts

the design of such networks and the steps involved in resource sharing. A central server

stores information about the files that exist on each peer in the network. Each peer sends

its location information on connecting to the network (Step 1). If Alice intends to download

a resource, she sends a search request to this server (Step 2), which returns information

about the peer (Bob) sharing the resource (Step 3). Alice then connects directly with Bob

and downloads the file (Step 4). This architecture offers very good performance in terms of

the response time to search requests. However, such architectures may not scale well since

the central server becomes a potential bottleneck. Further, due to the existence of a central

server, these schemes are not robust to attacks – an attack on the server can bring down

the entire network. Napster is a very popular P2P network that uses centralized indexing.

Napster collapsed due to litigations over potential copyright infringements.

2.1.2 Decentralized (Pure P2P) Networks

Decentralized networks adopt a distributed architecture for searching content shared

by peers. Each peer discovers and establishes connections with a variable number of servents

to exchange content as shown in Figure 2.1(b). A peer discovers new peers in the network

using broadcast messages. A search request (Step 1) is broadcast from the source to the

nodes directly connected to the source. Each of these nodes in turn broadcasts the request

to its neighbors (Steps 2, 3), until the message reaches a peer who possesses the content or

has traversed a maximum number of hops . Here, every peer is involved in handling and

forwarding request messages, thus behaving both as a client and as a server. Gnutella is an

example of a pure P2P network.

2.1.3 Hybrid Networks

Intermediate architectures have been prevalent in the recent past. In these net-

works, peers are classified into leaf nodes and superpeers (or supernodes), based on the

computation power and amount of bandwidth of these nodes (Figure 2.1(c)). Superpeers

are servents that are responsible for indexing the network content and for routing request

and response messages. Leaf nodes only provide content to the network and are shielded by

9

Server

Data

Data

Data

Data

Bob

Alice

1

1

1

4

1

2

3

(a) Centralized Network Architecture

2

3
2

2

2

2

11

3

1

1
Alice

Bob

(b) Decentralized Network Architecture

Superpeer

Superpeer

Superpeer

Superpeer

Leaf LeafLeaf

Leaf LeafLeaf Leaf LeafLeaf

Leaf Leaf

Alice

Bob

1

2

3

4

2

(c) Hybrid Network Architecture

Figure 2.1: Architectures in P2P Networks

10

the superpeers from any signaling messages, thus establishing a two-tier hierarchy among

the servents. As shown in the figure, a request originating at a leaf node (or superpeer) is

processed only by intermediate superpeers. The software developed by Sharman Networks

– Kazaa is an instance of such networks. However, many of the Gnutella servents have

adopted the hybrid model because it provides benefits from both centralized and decentral-

ized models.

2.2 Reputation Management

There has been a lot of work in the past on reputation-based trust management for

client/server based networks. An important instance of successful reputation management

is the centralized online auction system eBay [22]. In this reputation system, buyers and

sellers rate each other at the end of the transaction. A cumulative rating is computed for

each buyer and seller based on the above individual ratings. This rating is stored on a

central server managed by eBay. Hence, the above system uses a centralized approach to

manage and store reputation information.

The model proposed by Yu and Singh [43] builds a social network among agents

that supports participants’ reputation both for expertise (providing service) and helpfulness

(providing referrals). Every agent keeps a list of its neighbors (which can be changed over

time) and computes the trustworthiness of other agents by updating the current values

based on testimonies obtained from reliable referral chains. A bad experience with an

agent results in the decrease of its rating and this information is propagated throughout

the network.

The proposal for computing and using reputation for Internet ratings by Chen

et al [15] differentiates the ratings by computing a reputation for each rater based on the

quality and quantity of the ratings it gives. However, the method is based on the assumption

that the ratings are of good quality if they are consistent with a majority of the opinions.

Adversaries who submit fake or misleading feedbacks can still gain a good reputation as a

rater in their method simply by submitting a large number of feedbacks and becoming the

majority opinion.

Proposals in reputation-based trust management for P2P networks can be broadly

classified based on centralized vs distributed storage of reputation information.

11

2.2.1 Centralized Approaches

TrustMe [41] is motivated by the importance of anonymity in trust based systems.

A secure and anonymous underlying protocol has been proposed for trust management,

which provides mutual anonymity for both the trusted host and the querying peer. A

peer gives a reputation rating to another peer based on all its experiences with that peer.

The trust rating of the peer is an aggregation of all ratings obtained from the rest of the

peers. TrustMe provides a system similar to the secret ballot for voters. The trust rating

of each peer is stored on a random peer X which replies to all queries for the trust values it

possesses. A peer can anonymously issue a query and get the true value without requiring

to know the identity of peer X. However, this approach depends on the availability of the

peers storing the reputation information.

In the work by Minaxi Gupta et al [25], reputations are computed using either one

of two schemes - debit-credit reputation computation and credit-only reputation computa-

tion. This approach computes reputation as a function of two variables - peer’s behavior

and its capabilities (processing power, memory, bandwidth and storage capacity). Hence,

parameters such as size of shared files, bandwidth and time are used in computing the

reputation. Using a centralized reputation computation agent (RCA), a public-key based

mechanism has been proposed to address the problem of reliable reputations. The RCA

is contacted periodically by peers to get credits for their contribution in the system based

on the above schemes. Thus, the RCA maintains state information about all transactions

made by all the peers in the network.

Centralized approaches are useful in consolidating reputation data at one central

location. However, they may not scale well and may be susceptible to security attacks

such as denial of service attacks. Thus, as part of this work, we were inclined to choose

reputation systems that were decentralized in their approach.

2.2.2 Decentralized Approaches

There have been many approaches proposed to distribute and store reputation

information without the use of central servers. In the following paragraphs, some of the

important approaches pertinent to peer-to-peer networks have been described.

[11] focuses on management and retrieval of trust-related data by using a single

12

P2P distributed database which stores complaints about individuals if transactions with

them were not satisfactory. When an agent p wants to evaluate trust for another agent

q, it sends a query for complaint data which involves q, and decides q ’s trustworthiness

based on the returned data, using a proposed formula. Hence, complaints are the only

behavioral data being used in this work. This system does not incorporate both good and

bad transactions which is essential in estimating the reputation of a peer. Further, such

systems may be vulnerable to DoS attacks, since a malicious node could insert any number

of complaints into the system, without being detected.

The work by Yu et al. [43] is primarily about social mechanisms for regulating

users in electronic communities. This work provides a distributed agent architecture to

represent and propagate the ratings that participants give to each other. When evaluating

the trustworthiness of any party, a peer combines its local evidence (obtained from direct

transactions) with the recommendations received from others regarding the same peer.

They also propose an algorithm to compute the trust index for an agent in the range [-1, 1]

that was an outcome of local evidence and testimonies. This approach focussed primarily

on reputations, but did not address the issues of providing integrity and authentication of

messages.

EigenRep [27] uses a distributed and secure method to assign a unique global

reputation value to each peer based on the history of uploads using power iteration. This

work attempts to decrease the number of downloads of inauthentic files in a peer-to-peer file

sharing network. In this approach, each peer locally stores its own view of the reputation

of the peers it has interacted with. The global reputation of the peer is then computed

using local reputation values assigned by other peers, weighted by the global reputation

of the assigning peers. This work also does not focus on describing how integrity and

authentication of messages are achieved.

NICE [31] is a platform for implementing cooperative distributed applications.

Applications in NICE gain access to the remote resources by bartering local resources. For

each transaction, each involved user produces a signed statement (cookie) about the quality

of the transaction and exchanges the statement with its peers. Hence, the locally stored

reputation in NICE is an indication of the satisfaction expressed by other peers that it

served. Since the peers store their own reputations, no cooperation is required from other

peers for storage purposes. However, to compute reputations when needed, cooperation

from the other peers in the system is mandatory, just as in other reputation systems.

13

PeerTrust [42] is also a feedback based trust management system for peers to

quantify and compare the reputation of other peers in P2P networks. In this work, three

basic trust parameters are used for evaluating the trustworthiness of peers – feedback in

terms of amount of satisfaction, feedback context such as the total number of transactions

and the credibility of the feedback sources. The trust for a peer in this system is also a non-

decreasing scalar and is subjective. Each peer is mapped to maintain a small database that

stores a portion of the global trust data. Maliciousness is countered by having multiple

peers responsible for storing the same database. Voting can be used if these databases

differ. Trust is computed by querying multiple databases over the network. This work uses

a broadcast approach to obtain ratings for a peer, thus consuming significant bandwidth.

P2PRep [17] uses a distributed broadcast polling mechanism to search and dis-

tribute reputation information in the P2P network. Public key encryption has been used to

achieve confidentiality, integrity and non-repudiation of messages. In this approach, each

peer is associated with an opaque identifier. Each peer maintains a history of the trans-

actions and its experiences with other peers in its local reputation database. The protocol

comprises of five different phases. In the first phase, the initiator broadcasts its request to

the network, like in a standard Gnutella interchange and receives responses from the peers,

which include the identifier of the providers and a digest of the resource. In the resource

sharing and vote polling phase, the initiator enquires the network (broadcast) about the

provider from which it intends to download the resource. Upon receiving this poll message,

each peer checks its experience repositories and responds with votes if it has had a prior

transaction with that entity. In the third phase, the initiator performs a vote evaluation

on the set of votes that it has received about each provider. It then chooses the providers

with the highest reputation value as suggested by the voters. The fourth phase attempts

to handle some load balancing and prevent some security attacks on the protocol. In this

phase, the most reliable provider is contacted to verify the fact that it exports the resource.

In the final phase, the initiator downloads the resource and based on the quality of the

transaction, it updates the local repository with an entry for the set of providers from

which it downloaded the resource.

The authors of P2PRep also proposed XRep [21], as an extension to P2PRep,

in which two separate local repositories are maintained – one with reputation information

about resources and another with reputation information about the servents. In [18], they

have presented the details of the implementation of a reputation aware Gnutella servent.

14

RCert [34] is another reputation-based approach that uses public key encryption

to provide security properties such as authentication, integrity and non-repudiation. This

protocol aims to provide efficient retrieval of reputation information by storing the content

locally at the owner (server-side) in the form of certificates. The protocol also ensures that

these certificates are secure from being modified by the owner. This approach provides an

efficient mechanism for the retrieval of reputation content. Further, all messages in RCert

are unicast messages.

Thus we observe that reputation-based approaches in P2P networks require co-

operation between the participating nodes to ensure distributed storage and retrieval of

content. We observe that existing approaches adopt either a centralized or decentralized

mechanism for storing and retrieving reputation information. These approaches use pub-

lic key encryption to provide security properties such as confidentiality, authentication,

integrity and non-repudiation of messages. Thus, a useful reputation based P2P system

must be able to store and retrieve ratings in a decentralized manner and also provide au-

thentication, integrity and non-repudiation of messages. Only two of the above approaches

provided the desired features for the P2P reputation system – P2PRep/XRep and RCert.

In Chapter 4, we compare these two approaches and justify why we chose to extend the

RCert protocol. We also investigate the RCert protocol in greater depth in this chapter

and propose an extension to this approach to fix certain drawbacks and vulnerabilities.

15

Chapter 3

Review of Gnutella Design and

Implementation

In this chapter, we describe the reason for choosing Gnutella for our implementa-

tion and review the design of the Gnutella protocol. We also briefly describe the security

issues in Gnutella. We have left out the details of the specification and described only

sections that are relevant for this thesis. A detailed description of the protocol can be

obtained in the Gnutella specification [29]. In the final section, we describe Gtk-Gnutella,

a unix-based Gnutella servent.

The Gnutella protocol is an open, decentralized group membership and search

protocol, primarily used for file-sharing. Gnutella has been one the most popular file sharing

protocol in P2P networks. However, the original design of Gnutella did not incorporate

support for security, thus making it vulnerable to many attacks. We therefore chose to

study the design of Gnutella and to identify how best security can be incorporated within

its existing design.

16

3.1 Operation

There are no central servers in the Gnutella network. In order to join the system

a peer initially connects to one of several known hosts (e.g., gnutellahosts.com) that are

almost always available (generally, these hosts do not provide shared files). Such entities

are known as host caches. The host cache then forwards the IP addresses and port numbers

of numerous other peers that are currently online. This connection is performed over a TCP

session.

Once attached to the network (having one or more open connections with nodes

already in the network), nodes send messages to interact with each other. Messages can

be either a request message or a response to some previously received request message.

Messages can be broadcast (i.e., sent to all nodes with which the sender has open TCP

connections) or simply back-propagated (i.e., sent on a specific connection in the reverse

direction on the path taken by an initial, broadcast, message). Several features of the

protocol facilitate this broadcast/back-propagation mechanism. First, each message has

a randomly generated unique identifier. Second, each node keeps a short memory of the

recently routed messages, used to prevent re-broadcasting and implement back-propagation.

Third, messages are flagged with time-to-live (TTL) and hops passed fields. These messages

are described in detail in Section 3.3.

3.2 Protocol Description

A Gnutella servent connects itself to the network by establishing a connection

with another servent connected to a peer-group. Nodes forward all incoming messages to

all members of their peer-group.

Each Gnutella message contains a globally unique identifier (GUID) in its header.

When a node receives a message, it stores this message ID in a table before sending it on

to its peer-group. If the message ID is already in the table, it discards the message since it

has already been processed. After receiving the responses, the peer selects the resources it

desires to download. Resources are downloaded using the standard HTTP protocol.

A sample interaction of the initial handshake between a client and a server servent

has been shown in Figure 3.1:

Headers follow the standards described in RFC822 [19] and RFC2616 [23]. Each

17

Figure 3.1: Client-Server handshake in Gnutella

GNUTELLA CONNECT/0.6<cr><lf>
User-Agent: Gtk-Gnutella/0.92<cr><lf>
Pong-Caching: 0.1<cr><lf>
GGEP: 0.5<cr><lf> <cr><lf>

CLIENT SERVER

GNUTELLA/0.6 200 OK<cr><lf>
User-Agent: Gtk-Gnutella/1.0<cr><lf>
Pong-Caching: 0.1<cr><lf>
GGEP: 0.5<cr><lf>
Private-Data: 5ef89a<cr><lf>
<cr><lf>

GNUTELLA/0.6 200 OK<cr><lf>
Private-Data: a04fce<cr><lf>
<cr><lf>

[binary messages]

header is made up of a field name, followed by a colon, and then the value. Each line ends

with the sequence (< cr >< lf >), and the end of the headers is marked by a single line.

Each line normally starts a new header, unless it begins with a space or a horizontal tab,

in which case it continues the preceding header line.

3.3 Protocol Messages

After being connected successfully, a peer communicates with other servents by

sending and receiving Gnutella protocol messages. Each message is preceded by a message

header with the byte structure given below.

18

3.3.1 Message Header

The message header is 23 bytes and comprises of the fields as shown in Table 3.1

Table 3.1: Gnutella Message Header

Message ID (GUID) Payload Type TTL (Time to live) Hops Payload Length

0-15 16 17 18 19-22

A brief description of the elements in the header is provided below:

Message ID: A 16-byte string (GUID) uniquely identifying the message on the

network.

Payload Type: This field indicates the type of message. The following codes are

currently recognized: 0x00 = Ping, 0x01 = Pong, 0x02 = Bye, 0x40 = Push, 0x80 = Query,

0x81 = Query Hit

TTL: Time To Live. This field is similar to the TTL value in the IP header. The

value represents the number of times the message will be forwarded by Gnutella servents

before it is removed from the network. Each servent will decrement the TTL before passing

it on to another servent. When the TTL reaches 0, the message will no longer be forwarded

and is dropped.

Hops: This field indicates the number of times the message has been forwarded.

As a message is passed from servent to servent, the TTL and Hops fields of the header must

satisfy the following condition: TTL(0) = TTL(i) + Hops(i) where TTL(i) and Hops(i) are

the values of the TTL and Hops fields of the message, and TTL(0) is maximum number of

hops a message will travel (usually 7).

Payload Length: The length of the message (in bytes) immediately following

the header is stored in this field. The next message header is located exactly this number

of bytes from the end of this header i.e. there are no gaps or pad bytes in the Gnutella data

stream.

19

3.3.2 Message Types

Immediately following the message header is the payload consisting of one of the

messages shown in Table 3.2.

Table 3.2: Gnutella Message Types

Descriptor Description

Ping Used to actively discover hosts on the network. A servent
receiving a Ping descriptor is expected to respond with one
or more Pong descriptors.

Pong The response to a Ping. Includes the address of a connected
Gnutella servent and information regarding the amount of
data it is making available to the network.

Query The primary mechanism for searching the distributed net-
work. A servent receiving a Query descriptor will respond
with a QueryHit if a match is found against its local data
set.

QueryHit The response to a Query. This descriptor provides the recip-
ient with enough information to acquire the data matching
the corresponding Query.

Push A mechanism that allows a firewalled servent to contribute
file-based data to the network.

Ping and Pong Messages

Ping messages are broadcast into the network to discover new peers and statistics

about the resources that they possess. A peer receiving a ping message responds with a

pong message that is routed back to the originator along the path traversed by the ping

message. To conserve bandwidth, the protocol uses pong caching. When a peer receives a

ping message, it responds with a pong message with all the entries in its pong cache.

Query Message

A query message contains the search criteria specified by the user. As shown in

Table 3.3, the query message comprises of the search string provided by the user. It also

comprises of an optional extensions block, which will be described in section 3.4. A servent

decrements the TTL value by 1 before forwarding the query message to its neighbors. If,

after decrementing the header’s TTL field, the TTL field is found to be zero, the message

is dropped.

A servent receiving a message with the same payload message and Message ID as

20

one it has received before, discards the message since it has already processed the message.

Table 3.3: Query Message Format

Field Min Speed Search Criteria NUL(0x00) Extensions block (optional)

Byte offset 0...1 2...N N+1 N+1...L-1

Query-Hit Message

The QueryHit message is sent only in response to an incoming Query message. A

servent should reply to a Query with a QueryHit message if it contains data that strictly

meets the query search criteria. A QueryHit message should be initially generated with

hops=0 and the TTL field equal to the number of hops traversed by the corresponding

Query message. The Descriptor Id field in the descriptor header of the QueryHit should

contain the same value as that of the associated Query message. This allows a servent to

identify the QueryHit message associated with Query messages it generated.

The format has been shown in Table 3.4. The result set is a list of results with

each entry having the elements showed in Table 3.5.

Table 3.4: Query Hit Message Format

Field No of Hits Port IP Addr Speed Result Set Optional QHD Data Servent ID

Byte offset 0 1...2 3...6 7...10 11...10+N 11+N...L-17 L-16...L-1

Table 3.5: Result Set Structure

Field File Index File Size File Name NUL(0x0) Optional Result Data NUL(0x0)

Byte offset 0...3 4...7 8...7+K 8+K 9+K...R-2 R-1

Push Message

21

A servent may send a Push descriptor if it receives a QueryHit descriptor from a

servent that does not support incoming connections. This might occur when the servent

sending the QueryHit descriptor is behind a firewall. When a servent receives a Push

descriptor, it may act upon the push request if and only if the Servent Identifier field

contains the value of its servent identifier. The Descriptor Id field in the Descriptor Header

of the Push descriptor should not contain the same value as that of the associated QueryHit

descriptor, but should contain a new value.

Table 3.6: Push Message Format

Field Servent Identifier File Index IP Address Port Optional Push Data

Byte offset 0...15 16...19 20...23 24...25 26...L-1

3.4 GGEP Extensions

The Gnutella Generic Extension Protocol (GGEP) allows arbitrary extensions in

Gnutella messages. A GGEP block is a framework for other extensions. These extensions are

embedded in the trailer of Gnutella query and query-hit messages. The two peers negotiate

the version of GGEP being used during the initial handshake shown in Figure 3.1.

A GGEP block always starts with a magic byte used to help distinguish GGEP

extensions from legacy data which may exist. It must be set to the value 0xC3. The magic

byte is followed by any number of extensions. They are processed in the order in which

they appear. Table 3.7 shows the elements of the GGEP extension.

Table 3.7: GGEP Extension Format

Field Flags ID Data Length Extension Data

Length 1 1...15 1...3 x

Based on which bit in the flag field is set, this field conveys information about

the encoding and compression used in the GGEP extension. It also provides information

about the number of bytes used to represent the ID. More details about each individual field

22

can be obtained from [29]. In our implementation, all protocol messages are embedded as

GGEP extensions in the query and query-hit messages, and will be discussed in detail in

Chapter 4.

3.5 Gtk-Gnutella

In this section, we mention the existence of different implementations of Gnutella

and describe why we have used Gtk-Gnutella for our implementation. We highlight the

salient features supported by Gtk-Gnutella and briefly describe the design.

There are many different implementations of Gnutella that are currently available.

They are collectively called Gnutelliums. Limewire [7] is the most popular open-source java-

based Gnutella servent. Bearshare [1] and Gnucleus [3] are the predominant servents on

Windows. Some other implementations are Morpheus, Mutella, Phex, etc.

Gtk-Gnutella (Gtk-G) [24] is an open-source GUI based Gnutella servent. It is a

fully featured Gnutella servent designed to share any type of file the user wishes to share.

It has been developed and tested under Linux using C. Gtk-gnutella is open-source and is

released under the GNU Public License (GPL). In this work, we understand the design of

Gtk-Gnutella and extend the code to incorporate the reputation protocol that is described

in Chapter 4.

3.5.1 Features

This section summarizes the salient features that have been implemented in Gtk-

Gnutella. We provide only a brief description of the features here. Detailed information

about the features are described in the Gnutella specification [29].

• GWebCache: The goal of the Gnutella Web Caching System (GWebCache) is to

eliminate the initial connection point problem of a fully decentralized network. The

cache is a program placed on any web server that stores IP addresses of hosts in the

Gnutella network and URLs of other caches. Gnutella clients randomly connect to

a cache in their list. They send and receive IP addresses and URLs from the cache.

With the randomized connection it is to be assured that all caches eventually learn

23

about each other, and that all caches have relatively fresh hosts and URLs. The

concept is independent of Gnutella clients joining and leaving the nework.

• GNet compression: Gtk-G implements compressed gnutella net connections to con-

serve bandwidth in the network. Compression is meant to be done on a per-connection

basis. The deflate scheme is handled by the www.zlib.org library (the deflate/inflate

routines). This implies that there will be a compression dictionary and history per

connection on both ends, thus achieving a good compression as compared to compress-

ing each message individually. The peers exchange this information in the Accept-

Encoding and Content-Encoding headers in the initial handshake described in Fig-

ure 3.1

• Ultrapeers: Gtk-G provides a hierarchical Gnutella network by categorizing nodes

on the network as leaf nodes and supernodes or ultrapeers, based on the bandwidth

capacity and computational power of the peer. A leaf node keeps only one open con-

nection to its neighboring supernode. A supernode acts as a proxy to the Gnutella

network for the leaf nodes connected to it. This makes the network scalable by reduc-

ing the number of nodes on the network involved in routing and message handling, as

well as reducing the actual traffic between them.

• PARQ : Passive/Active Remote Queueing (PARQ) allows a provider of a resource to

enqueue requests from initiators, when the server has no upload slots available. The

queueing technique has been built considering fairness and other such factors.

• QRP : QRP (Query Routing Protocol) has been implemented in Gtk-G for routing

messages efficiently by avoiding broadcast queries on the network. In this protocol,

hosts create query route tables by hashing file keywords and regularly exchange them

with their neighbors. Thus, a request is forwarded only if the route table received on

a connection matched the keywords in the request string.

• HASH : Hash/URN Gnutella Extensions (HASH) allow files to be identified and lo-

cated by Uniform Resource Names (URNs) – reliable, persistent, location-independent

names, such as those provided by secure hash values. This technique greatly enhances

end-user experience by combining display of query results which represent the same

file in spite of having different filenames. This enables parallel downloading from

multiple sources (swarming) thus providing faster downloads.

24

• PFTP : Partial File Transfer Protocol is a protocol for sharing partial files on the

Gnutella network. A partial file is a file that a host has only downloaded parts of.

Partial file sharing allows files to spread faster over the Gnutella network.

The graphical user interface for Gtk-gnutella has been developed using GTK+ - The GIMP

ToolKit, a multi-platform toolbar for creating GUIs.

3.5.2 Design

Gtk-Gnutella has been implemented utilizing the functionality of events and call-

backs provided by GTK. Every action, such as receipt of a network message, a timeout or a

button click by a user is associated with an event. Each event has callback APIs associated

with them, which are invoked when the event gets triggered. We provide further details

about the design of Gtk-Gnutella in Section 5.1.

We chose to build our reputation management system as an extension to Gtk-

Gnutella considering its simplistic design, user-friendly GUI, the development environment

used and the open-source nature of the project. Further, the GUI is also useful in display-

ing many advanced level, protocol specific statistics that would be useful to analyze the

implementation. The details of our system that have been incorporated into Gtk-Gnutella

have been provided in Chapter 5.

25

Chapter 4

Review and Analysis of RCert

Reputation Management Protocol

The RCert protocol has been designed to provide a mechanism to determine and

establish trust between nodes in a P2P network. This chapter discusses the goals of the

protocol and describes the approach in detail. We extend this protocol by adding messages

to address a few shortcomings of RCert. We then perform a security analysis on this protocol

and present the details. Finally, we compare RCert with P2PRep, another reputation-based

protocol in P2P networks and describe the rationale for extending the RCert protocol as

the foundation for building our reputation management system.

4.1 Introduction

The RCert protocol was designed with the following properties in mind:

• Distributed storage of reputation information: This protocol does not require any

centralized infrastructure. It uses a decentralized approach to retrieve and store rep-

utation information.

• Efficient retrieval of reputation information: In some of the existing approaches

[17],[43], a broadcast approach was used to retrieve reputation information. RCert

26

adopts a different approach in which each peer stores its own reputation content lo-

cally. Thus, this approach ensures that the time for retrieval of the reputation content

is a constant factor.

• Integrity and non-repudiation: RCert uses public/private keys and digital signatures

to ensure the integrity and non-repudiation of messages sent on the network. Further,

it does not require any PKI infrastructure for generating these keys.

• Efficient use of network bandwidth: Since this protocol stores the reputation infor-

mation locally, the number of messages exchanged between the peers is significantly

reduced. Further, all RCert messages are unicast, thus ensuring efficient utilization

of network bandwidth.

• Global rating for each entity : The RCert protocol uses a simple technique to compute

the global rating information for each peer by considering the average of all the ratings

in its history.

Each peer is identified by an opaque identifier called GUID (Globally Unique Identifier).

The GUID is sent in all the messages to identify the originator of the message, as described

in Section 3.2. Just as in the case of most reputation-based P2P systems, the reputation

information about a peer is associated with its GUID. Each new peer starts with a default

rating and accumulates new rating values as it participates in the network. If a peer wishes

to build its reputation over a period of time, it needs to maintain a persistent identifier in

the network. When a peer assumes a new GUID, it loses all information about the past

reputation and is treated as a new member in the network.

4.2 Overview

RCert allows the initiating servent to verify and evaluate the ratings of providers

before downloading a resource from them. It allows the provider to store the history of its

transactions locally and makes it available to the network when requested. The protocol

provides a mechanism by which the initiator is able to rate the provider at the end of the

transaction and provide a rating certificate for this transaction. The initiator is able to

compute the global rating for a provider dynamically (as an average of the providers’ past

ratings) and choose the best set of providers to download from.

27

This protocol uses two important entities for storing reputation information -

rating certificates and recommendations.

4.2.1 Rating Certificates (RCert)

Rating certificates store the ratings received from other peers at the end of a

transaction. RCerts consist of a header, a list of RCertUnits and the digital signature

as shown in Table 4.1. Each RCert unit essentially contains the rating provided by the

previous recommenders and the identity information about the recommender who provided

this rating. These certificates are stored locally at the provider and are sent by the provider

along with the query-hit message. The provider signs the RCerts and stores the signature

in the Signature field before sending them into the network.

Table 4.1: Rating Certificates

Header RCert Unit1 RCert Unit2 ... RCert Unitn Signature

The RCert header contains information about the provider and its local certificates,

and is shown in Table 4.2. It contains information about the identity of the owner – the

GUID and the public key. This information is used during the authentication of the RCert

message. The RCert Num and Previous RCert Num fields in the header are used to provide

information about the history of certificates stored. In due course of time, the provider

may accumulate many certificates and it may not be efficient to send all the certificates,

when requested. Hence, using these fields, the provider may send only the most recent

certificates, thus conserving bandwidth. It does this by setting the RCert Num to the most

recent certificate list and by setting the Previous RCert Num to the value referring to the

past certificates. If the provider is able to send all the certificates in the message, it sets

the Previous RCert Num field to 0.

Table 4.2: RCert Header Format

Owner ID Public Key RCert Num Previous RCert Num

As mentioned, each RCert Unit contains information about the rating and the

28

provider of the rating, as shown in Table 4.3. A new RCert is appended to the list

of RCerts at the end of each transaction with this peer. The rater ID, IP address and

port number fields provide information about the identity of the recommender. The rating

contains information about the recommenders’ transaction experience with the provider.

The counter is the sequence number for this certificate. Every new RCert has the counter

value incremented by one. The timestamp field contains the value of the timestamp issued by

the provider. Each RCert unit is individually signed by the recommender of that certificate.

Table 4.3: RCert Unit

Rater ID IP Address Port Number Rating Counter Timestamp Signature

4.2.2 Recommendations

Each peer stores a list of recommendations that contains information about the

rating that it had provided to the servents from which it downloaded resources in the

past (Table 4.4). It provides information about the identity of the peer for whom the

recommendation was provided (GUID), the timestamp that was provided by that servent

and status information to identify the validity of the certificate (valid or revoked). It

provides information about the identity of the revoked peer (IP address and port number)

if the entry was revoked. We describe the use of this information when we describe the

protocol in detail in Section 4.3.

Table 4.4: Recommendations

GUID Timestamp IP Address Port Number Status

4.3 Protocol description

Each transaction of the RCert protocol involves three types of entities in the

network – an initiator, a set of providers and a set of recommenders. The initiator is the

29

entity searching for content in the P2P network. Any peer who currently shares the resource

that was requested by the initiator is defined as a provider of that content. A peer who

has had a transaction with some such provider in the past and currently possesses a rating

for that provider is termed as a recommender. The exchange of messages between these

entities has been described below. For the sake of simplicity of this discussion, Figure 4.1

shows only one provider (P) and n recommenders.

Figure 4.1: RCert Protocol Message Flow

Provider (P) Initiator (S) Recommenders

1. Query

2. Query Hit (Rcerts)

3. Verify

4. Last-timestamp (revoked)

3. Verify

4. Last-timestamp (revoked)

3. Verify

4. Last-timestamp (valid)

5. Ack

6. Timestamp

7. Transaction

8. Update Rcert

9. Revoke

10. Release

R1 R2 Rn

The initiator (S) who wishes to search for a resource broadcasts a Query message

into the network(1). Any providers (P) who are currently sharing the resource respond to

this request message by sending the QueryHit message(2). The above steps are the same

as the initial steps in the Gnutella protocol. However, in addition, the providers send their

RCerts, that are locally available at the provider, in the trailer of the QueryHit message.

The initiator verifies the signature in the response message and drops the packet if there is

a mismatch.

This is followed by a series of reputation messages exchanged between the three

30

entities. S computes the global rating for each provider from the RCerts that it received

and selects the providers who have a rating higher than a predefined threshold value. The

initiator needs to verify the validity of the RCerts of each of these providers. This is done by

checking the last RCert unit in the received certificate list by sending a verify message to the

recommender R1(3). The verify message contains the certificate that is being verified. R1

verifies the certificate and responds with a last-timestamp message(4). The last-timestamp

message contains information about the timestamp that was provided by the provider, the

status of the timestamp(valid or revoked) and the identity of the peer who authorized the

revoke. If the recommender R1 was offline, then, the initiator repeats steps 3 and 4 by

contacting the previous raters until there is one available as depicted in Figure 4.2. In this

figure, we see that the most recent recommender R5 is offline and hence, the initiator S

is not able to receive a last-timestamp response from it. Hence, it contacts R4, which is

also offline. It then contacts R3 and receives a last-timestamp message. S verifies that the

status in this message is revoked and the IP address and port number of the revoked peer

matches that of the succeeding recommender in the certificate list that it originally received

from the provider (i.e with the IP address and port number of R4). If verified, S computes

the global rating for P using the certificate ratings upto R3’s certificate (since it was not

able to verify certificates RCert4 and RCert5. The receipt of the last-timestamp message

terminates the process of verifying the providers’ certificates.

After this step, the initiator sends a message to those providers for which it was

able to successfully verify the rating certificates. This ack message indicates the initiator’s

interest in proceeding with the transaction (5). The ack is used as an evidence of transaction

request by P. P then responds with the timestamp message (6). This message provides the

time value on the provider’s machine and the transaction counter. The initiator uses this

time information in the future steps of the protocol. The transaction counter indicates the

number of transactions the provider has experienced in the past. Thus, the counter reflects

the latest information about the transactions of the provider.

The peers then begin the transaction, using the HTTP protocol, just as in Gnutella

(7). At the end of the transaction, the initiator is provided the option of rating the service

that was provided by P. The peers may consider multiple factors such as quality of content,

bandwidth provided, etc, while rating the transaction. For this purpose, the initiator pre-

pares a new RCert unit with its rating for the provider and sends it in the update RCert

message (8). It also includes the time information that was provided by P in the timestamp

31

Figure 4.2: Protocol behavior with offline recommenders

R1
(online)

R5
(offline)

R4

(offline)

R3
(online)

R2
(online)Provider

(P)

Initiator

(S)

RCert3

RCert4

RCert1

RCert2

RCert5

Reputation Certificates

received from P

Recommenders

for Provider P

Verify (RCert3)

Last-timestamp

Verify (Rcert4)

Verify (R
C
ert5)

message. On receiving this message, P verifies the value of the timestamp information in

the new certificate. If the value is successfully verified, it appends the new rating to its list

of certificates. At the same time, the initiator stores the last-timestamp (recommendation

information) and makes it available to others, when needed. If it was not the first rater, it

contacts the previous recommender to revoke the last-timestamp information on that peer

(9).

The recommender Rn verifies the revoke message received from S and if valid,

revokes the timestamp information stored locally by creating a status revoke and adding

the identity of S who revoked the certificate. Finally, the provider notifies the previous rater

that it can remove its last-timestamp certificate using the release message(10).

32

4.3.1 Discussion

The RCert protocol provides for secure local storage of rating certificates at the

provider. We also call this server-side storage, since the provider acts as the server in a

transaction. Hence, reputation information about a provider is always available, as long

as the provider is online. The protocol allows the initiator to verify these rating certifi-

cates by contacting the recommenders in temporal order, starting from the most recent

recommender. Based on the ratings available in these certificates, the initiator is able to

choose the best set of providers from whom he/she wants to download the resource. The

initiator would require to contact past recommenders only in instances where the most re-

cent recommender is unavailable. Further, in these situations, the past recommenders are

able to verify the rating certificates for the initiator. The last-timestamp message serves

to verify rating certificates. After verifying the validity of the certificates of all chosen

providers, the initiator sends Acks to these providers indicating an interest in proceeding

with the transaction. The Ack message serves as evidence of a transaction for the provider

for future references. If the initiator refuses to give a rating, then the provider can use the

Ack message as evidence of the transaction. This message can be provided to the previous

recommender to request arbitration, as required.

The protocol also provides a mechanism to rate the provider at the end of the

transaction. The servent is allowed to rate the transaction with a binary rating (0 or 1)

based on different factors such as quality of transaction, authenticity of shared content, etc.

The protocol does not define what factors are required to be considered by the servents.

Further, the global rating for a servent is computed as the average of its past ratings. While

this protocol allows for such a simple mechanism to provide ratings, any other approach

may be used in place of the above method. For example, the approach described in [44] uses

a weighted average approach for computing the global rating. [43] applies Dempster-Shafer

calculus to calculate the ratings for agents.

The protocol also provides a mechanism by which the initiator is able to revoke

the timestamp from the most-recent recommender. Thus, at the end of a transaction, the

initiator has a new valid recommendation in its recommendation list, the provider has a

new certificate appended to its list of rating certificates and the most recent recommender

has the corresponding recommendation revoked in its recommendation list.

Revocations for offline recommenders: In this paragraph, we describe the

33

Initiator S Recommender RProvider P

OFFLINE

Revoke

(a) Recommender R offline

Initiator T Recommender RProvider P

ONLINE

Verify

Initiator S

OFFLINE

Verify

Last-Timestamp (Status = Valid)

(b) Initiator S is offline and Recom-

mender R is online

Figure 4.3: Protocol behavior when most-recent recommender is offline

behavior of the protocol when the most-recent recommender is offline when the revoke

message is sent. We observe that this property does not affect the normal behavior of the

protocol because the provider stores the most recent certificates and the last certificate in

its certificate chain points to the appropriate recommender. We consider the following case

where there is a peer S (initiator), peer P (provider) and peer R1 (most-recent recommender)

who is offline, as depicted in Figure 4.3(a).

S completes a transaction with P and sends a new rating to P. Now, when it sends

the revoke message to R1, R1 does not acknowledge it since it is offline. At some later

instance, S goes offline and R1 logs back into the network as shown in Figure 4.3(b). A

new initiator T requests certificates from P. P sends its list of certificates. T contacts S

(most-recent recommender), but does not receive any response since S is offline. Hence, T

contacts the previous recommender R1 who responds with the last-timestamp message with

a valid timestamp. At this point, since T has verified the signature on the list of RCerts

that it received from P, it is aware that it possesses the most recent recommendations and

that R1 has provided an incorrect timestamp. Hence, it can send a message asking R1 to

update its information by sending the information about S (the peer who was supposed to

have revoked the certificate).

Interleaved/Concurrent sessions: The authors of the RCert protocol do not

34

specify the behavior of the protocol in the presence of interleaved transactions. In this para-

graph, we suggest changes in the protocol that are able to handle multiple sessions started

simultaneously with the same provider. In any distributed protocol that involves multiple

writers, the resource being written must be locked such that we can ensure consistency in

the interpretation of the resource. In the context of the RCert protocol, the shared resource

being written is the rating certificate chain at the provider. In the RCert protocol, let us

assume multiple initiators desire to begin simultaneous sessions with provider P and rate

the provider at the end of their respective transactions. As a constraint, the protocol can

allow all transactions to proceed serially - the provider can serve only one initiator at a time.

However, in P2P networks such a constraint is undesirable since it could lead to denial of

service attacks. We suggest a simple extension to RCert that allows simultaneous sessions

with the provider. At the end of the transaction, the initiator can signal the provider (write

request) that it is interested in providing a new rating, before sending the update rcert

message to the provider. At this point, the provider grabs a lock for this session, if avail-

able, and sends its latest certificate chain. Following this step, the provider queues write

requests received from other initiators, since it is still in the process of appending a new

rating certificate to its certificate chain. After receiving the new rating from the initiator,

P will release the resource and respond to any other initiators waiting in the queue to send

a new rating certificate.

4.4 Protocol enhancements

In this section, we describe the shortcomings of the RCert protocol and propose

a few improvements to address these problems. We highlight the two new messages that

have been added into the protocol. We also describe the security extensions that have been

incorporated into RCert to address certain vulnerabilities.

4.4.1 Message Extensions

In the RCert protocol, the initiator does not expect any acknowledgement for the

Update RCert message sent to the provider. It sends the Revoke message to the recom-

mender assuming that the provider received the Update RCert message and that it appended

35

the new rating to its certificate list. However, if the provider was offline when the initiator

sent this message, the protocol may enter an unstable state, where the most recent recom-

mender has a different notion about the status of certificates compared with the notion at

the provider.

To prevent such a situation, we introduce two additional messages into the protocol

as shown in bold in Figure 4.4. The Update RCert and Revoke messages are acknowledged

using the Update Ack and Revoke Ack messages. In the current protocol, the initiator

does not expect an acknowledgement to the Update message that it sends to the provider.

Thus, there is no mechanism by which the initiator can be ensured that the provider has

received the message. Hence, in Figure 4.4, after sending an Update RCert message(8),

the initiator waits for an Update Ack message(9). Only after receiving this message, S

sends the Revoke message(10). Again, it waits to receive an acknowledgement to the revoke

message (11). The initiator re-sends these messages, if it does not receive an ack from the

servents. Further, we have also removed the Release message, since this message was no

longer required as part of the protocol.

Figure 4.4: RCert Protocol Message Flow (Modified)

Provider (P) Initiator (S) Recommenders

1. Query

2. Query Hit (Rcerts)

3. Verify

4. Last-timestamp (revoked)

3. Verify

4. Last-timestamp (revoked)

3. Verify

4. Last-timestamp (valid)

5. Ack

6. Timestamp

7. Transaction

8. Update Rcert

9. Update Ack

10. Revoke

R1 R2 Rn

11. Revoke Ack

36

4.4.2 Security Extensions

The RCert protocol lacks a mechanism of providing message authentication. The

receiver of a message will not be able to verify the initiator of that message, since there is no

information being provided in the messages. Lack of message authentication could lead to

ID spoofing or ID stealth attacks. We propose a mechanism to authenticate RCert protocol

messages. Further, since each of the RCert units are signed individually, the provider would

be able to remove certificates selectively from its history. The onion signature scheme

proposed in this section provides a solution against this problem.

Authentication

We propose a mechanism by which the peers are able to verify the authentication

of the sender’s messages. The approach we have used is to include essential information

about the sender’s identity within each protocol message. We then ensure that there is a

mechanism by which we can detect tampering of these messages in the network using public

key encryption.

The opaque identifier of each peer (GUID) is computed as the secure hash (md5

digest) of the public key of that peer. Each protocol message includes the GUID and public

key of the peer (collectively termed as identity of the peer) who sent the message. This

information along with the message payload is signed digitally using the private key of the

peer before being sent into the network. On the receipt of a message, the receiver first

verifies the digital signature on the message. If verified, it implies that this message was

received from the network untampered.Now the recipient verifies the GUID present in the

message. This ensures that the message is verified for authenticity before being processed

at the receivers end. The process of message authentication is depicted in Figure 4.5.

In Figure 4.5(a), we show the process by which the sender (S) prepares and dispatches a

protocol message and Figure 4.5(b) depicts how this message is authenticated at the receiver

(R).

Onion Signatures

As discussed in Section 4.3, the RCert protocol provides a mechanism by which

rating certificates are stored locally by the owner. Each rating certificate is signed indi-

vidually by the corresponding recommender as was described in Table 4.1 and Table 4.3.

The digital signatures were intended to protect the certificates from being modified by the

owner. Here, we discuss a situation where a malicious provider is able to tamper with its

37

Public Key - P
s

GTKgREP

Message

GUID - H(P
s
)

Signature

Sender S

Public Key (P
s
)

GTKgREP

Message

Hash

Function

GUID

||

Digital

Signature

Function

N

E

T

W

O

R

K

(a) Message creation process at the sender’s side

Public Key - P
s

GTKgREP

Message

Recvd GUID (G)

Signature (S)

Receiver R

Hash
Function

H(P
s
)

Digital
Signature

Function

H(P
s
) = G ?

S(m) = S

S(m)

Yes

Message

Authenticated

Yes

N

E

T

W

O

R

K

N
 o

ERROR

No

ERROR

(b) Message authentication at the receiver’s side

Figure 4.5: Message Authentication in Extended RCert

38

certificates and thus increase its cumulative rating. We then describe the concept of onion

signatures that provides a solution against this vulnerability.

A malicious provider may be able to selectively remove certificates which have

received negative ratings from its history as depicted in Figure 4.6. The figure shows a

provider with seven transactions in its history, which includes two bad transactions that

it made in the past. We observe from this figure that the provider is able to remove

certificates 2 and 3 from its history and create a new chain of certificates excluding these

bad transactions. The same argument holds for the fact that the provider will also be able

to add spurious certificates into its history thus increasing its global rating. This is possible

because all certificates are not verified by the peer receiving these certificates (only the most

recent certificates would be verified). More importantly, this drawback is due to the fact

that each recommender computes a signature only on its own certificate while sending a

new rating certificate using the Update RCert message.

Thus, in order to protect the integrity of the local certificate database, an onion

layered signature scheme can be used by the recommenders while sending the Update RCert

Message. In this method, the recommender incorporates its signature over all the previous

certificates that it received from the provider, in addition to its new rating certificate. This

can be visualized as having layered signatures, where each layer contains the certificate

and signature provided by the previous recommenders – the innermost layer comprises

of the information from the first recommender and the outermost layer comprises of the

information from the most recent recommender.

This method is illustrated in Figure 4.7. Let us assume that R1, R2 and R3 are

the only recommenders, P is the provider and S is the initiator. Let us assume that R1,

R2 and R3 undergo transactions with P in that order. In this method, when R1 sends

the Update RCert message, it signs the only certificate RCert1 with its digital signature S1,

since it is the first recommender. When R2 completes its transaction, it provides a signature

encapsulating R1’s signature. Thus RCert1, S1 and RCert2 become the payload to compute

the digital signature S2 on R2. Similarly, R3 would provide a signature S3 encapsulating

R1’s and R2’s payload and signatures. Thus, if a provider modifies any part of its local

certificate database, the digital signature will fail to match and thus its malicious behavior

can be detected.

39

Figure 4.6: Selective Certificate Deletions

G GGGG

BB

Signature SignatureSignatureSignature

SignatureSignature

Signature

Most recent

certificate

Deleted

G: Good Rating

B: Bad Rating

Figure 4.7: Onion Signatures in RCert

RCert1

RCert1

S1

S1 RCert2 S2

RCert1 S1 RCert2 S2 RCert3 S3

At Recommender R1's node

At Recommender R2's node

At Recommender R3's node

4.5 Security analysis

In this section, we perform a security analysis on the RCert protocol after incor-

porating the extensions described in Section 4.4. As discussed in Section 4.3, this protocol

involves three entities – the initiator who requests for resources, the provider who shares the

above resource (or multiple providers who share the resource) and the recommender who

has a rating for the provider (or multiple recommenders with ratings for each provider). We

consider the behavior of the protocol when one or more of these entities can be malicious

peers.

40

4.5.1 Integrity and Non-repudiation

Public key encryption is being used to maintain the integrity and non-repudiation

of all RCert messages. The content of all the messages is being digitally signed using the

private key of the peer. The public key and GUID are being sent in messages to verify the

integrity of these messages. This approach prevents any outsider from tampering with the

messages in the network.

4.5.2 Authentication of messages

The extension that was proposed in section 4.4.2 provides for the authentication of

messages exchanged by the protocol. The GUID is computed using a one-way hash function

as the secure hash of the public key of the peer. We know that one of the properties of

one-way hash functions is weak collision resistence – i.e. given the hash value H(m) and

the message m, it is computationally infeasible to find another message m’ such that Hm’)

= Hm). Thus, given the public key and its hash value, it is computationally infeasible to

find another public key with the same hash value. This property in conjunction with digital

signatures (message integrity) safeguards the protocol against ID stealth or ID spoofing

attacks.

4.5.3 Validity of RCerts

The last-timestamp message used in this protocol provides information about the

validity of the certificates. The initiator contacts the previous recommender to verify the

validity of the certificate. If the previous recommender responds with a last-timestamp

message that has not been revoked, then, the certificate is up-to-date. Otherwise, the

certificate received from the provider is not the latest information and hence, this provider

can be avoided.

4.5.4 Misbehaving entities

Here, we discuss some scenarios assuming one or more of the entities can be ma-

licious.

41

• Misbehaving Providers: The provider may not wish to divulge previous recommen-

dations, if it has received bad ratings in the past. The essential motivation for such

an act could be the fact that the provider has accumulated a rating lower than the

threshold initial value it started with. Hence, to avoid such circumstances, the mini-

mum rating that a peer can receive has been ensured to be greater than or equal to

the threshold initial value.

Two collaborative peers may conduct multiple transactions with each other and rate

themselves at the end of each transaction, thus increasing their global rating value.

To prevent this, only the latest rating (determined by the received timestamp) is used

for calculating the cumulative rating from each peer. If a rating already exists for

the peer, it is overwritten with the new rating. This ensures that the global rating

is calculated as a factor of many independent transactions undergone with different

entities, thus decreasing the effect of such collusion.

Providers may spurious add rating certificates or delete certain certificates in its his-

tory (for which it has received bad ratings). The property of onion signatures that

was suggested as an extension to RCert detects such misbehavior. Such misbehavior

is detected because the digital signature on the last certificate will not match the

computed signature.

• Misbehaving Initiators: At the end of the transaction, the initiator is expected to

provide a rating of the provider about the quality of the transaction. If the initiator

refuses to give a rating, then the provider can use the ack message in the protocol as a

proof of the transaction. This message can be provided to the previous recommender

to request arbitration. Although there is no mechanism defined in the protocol, it can

be extended to provide the above functionality.

In addition, the initiator may successfully revoke the rating certificate from the most-

recent recommender without sending the update rcert to the provider. This could lead

to an unstable state regarding the transaction. In order to prevent such misbehavior,

the initiator is required to send additional information in the revoke using which the

most-recommender is able to verify that the provider has received the update rcert

message from this initiator. The initiator sends a signed rating-timestamp as part of

the revoke message. This rating-timestamp is signed by the provider and appended

in the update ack message. The rating-timestamp will include a new time value and

42

the identity of the rater (i.e. identity of the initiator) and is digitally signed by the

provider. When the most-recent recommender receives the revoke message, it verifies

the signature on the rating-timestamp to ensure that the initiator has sent a new

rating to the provider before sending the revoke message.

• Malicious Recommenders: A malicious node may send a revoke message attempting

to revoke a legitimate certificate stored on a recommender. The RCert protocol pre-

vents such misbehavior. The recommender receiving this message first verifies if the

timestamp is more recent than the one that it currently possesses for the provider.

It also verifies whether the timestamp was indeed signed by the provider and revokes

the timestamp only if the two conditions are satisfied. Otherwise, the recommender

simply discards the message.

The most recent recommender for a provider may falsely respond with a last-timestamp

message by setting the status as revoked. This act is easily detected by the initiator

receiving this timestamp message. The fact that this recommender was the most

recent recommender on the provider’s list of recommendation certificates implies that

a valid last-timestamp message was expected from this peer. Thus a recommender

will not be able to falsely respond with the status of the certificate as revoked.

4.5.5 Collusions

In non-cooperative networks such as peer-to-peer networks, a set of peers may collab-

orate to achieve some of their goals. For example, the provider and the most-recent

recommender may collude to drop new rating information and revoke message re-

ceived at the two peers respectively. Such a collusion allows the provider to drop all

negative ratings that it has received for its bad transactions. The RCert protocol

does not detect such misbehavior in the network. In order to detect collusions in

the P2P network, certain peers in the networks can behave as watchdogs[33] to the

network, whose responsibility is to detect protocol misbehavior in the network. Such

peers can store the identities of misbehaving nodes and provide this information to

the network, when requested. Another mechanism that can be adopted is to allow

the recommenders to store the ratings at their end in case it had given a bad rating

for a transaction. Hence, in this extension, in addition to verifying the providers’

43

certificates, the new initiator also queries the network to be informed of any negative

ratings associated with a provider. Thus, the global rating would be a function of

the ratings in the provider’s certificates and the negative ratings received from other

peers. Although this extension makes the protocol use a broadcast approach, the

protocol still uses the bandwidth conservatively since the number of negative ratings

are much fewer than the number of positive ratings in the network.

4.6 Extended RCert vs P2PRep/XRep

We evaluated two protocols before commencing on the implementation of a repu-

tation system for P2P Networks - P2PRep/XRep and RCert. P2PRep was briefly discussed

in Section 2.2.2. Both protocols were specific to P2P networks and had different approaches

in distributing and storing the reputation information. This section highlights the security

features provided by P2PRep and compares them with RCert (with the proposed exten-

sions). It also compares the two approaches in terms of performance such as bandwidth

consumed, delay, etc.

4.6.1 Security Analysis of P2PRep/XRep

Public key encryption has been used to provide integrity and confidentiality of

messages. P2PRep uses hashes and signatures to detect tampered votes. A pair of keys are

generated on the fly for each poll message that is being sent into the network by the initiator.

When sending the poll request, the initiator includes the set of providerids whose reputation

is being enquired and a public key PKpoll generated on the fly for the poll request. The

recommenders send their responses to the poll by encrypting them with this public key.

Hence, P2PRep also addresses confidentiality of the votes sent by the recommenders. The

advantage of this method is that the votes and the recommender’s identity remain concealed.

To prevent a provider from spoofing identities, there is a challenge-response phase being

used just before the commencement of the download. In this mechanism, when the initiator

(S) is ready to download a resource from the provider (P), S challenges P to assess whether

it corresponds to the declared serventid. P will then need to respond with a message

containing its public key and the challenge signed with its private key. If the signature is

44

verified successfully at the initiator, then, the initiator proceeds with the download.

P2PRep uses two different variations of its protocol – basic polling protocol and

enhanced polling protocol. In the former, the recommenders do not reveal their identities,

whereas, in the latter they reveal their identities. While the former protocol addresses

anonymity to some extent, the latter provides an opportunity for the initiator to choose

votes based on the credibility of the recommenders. To prevent recommenders from sending

fake poll reply messages, the protocol uses techniques based on IP clustering.

4.6.2 Comparison of the two approaches

In this section, we compare the two approaches RCert and P2PRep/XRep in terms

of security and performance.

Security: Both approaches use public key cryptography to ensure integrity, au-

thentication and non-repudiation. Both approaches use digital signatures to verify the

integrity of messages. P2PRep/XRep provides a higher degree of security by incorporating

confidentiality and anonymity of the participating peers. While this provides secrecy of

communication, it causes significant overhead at each peer, since they would be involved in

encryption and decryption for every P2PRep message processed. Further, we felt that se-

crecy of communication between the peers is not one of the essential goals for our reputation

system.

Performance: There are different factors that we considered to measure the

performance of the two approaches –

• Bandwidth Cost : There is one poll message being broadcast into the network for

each servent or set of servents per search message in P2PRep. Broadcast causes

significant bandwidth overheads to the Gnutella network. In RCert, all messages

involving communication between the initiator, the provider and the recommender

are unicast.

• Computational Cost : The P2PRep approach creates a public/private key pair for each

poll message being sent into the network. Key generation is a very costly operation

and hence, this approach requires significantly higher computational costs. In RCert,

there is only one public/private key pair being generated for each peer to serve as its

45

identity. It uses the same key pair for authentication and providing integrity of all

RCert protocol messages.

• Recommenders’ Availability : P2PRep uses a client-side storage approach for storing

reputation information – the reputation content is stored at the rating peer (recom-

mender) and not at the target peer (provider). Thus, this protocol depends signifi-

cantly on the availability of the recommenders, since they are required to respond to

the initiator with their opinions. On the contrary, RCert provides for server-side stor-

age of rating certificates, i.e. reputation information is stored locally at the provider.

Thus, in this approach, reputation information about the provider is always available

as long as the provider is online. Further, even if one of the recommenders is not avail-

able, it is still possible to contact one of the previous recommenders and successfully

verify the authenticity of the certificates.

• Reputation Repositories: In P2PRep, when A downloads a resource from B, A (recom-

mender) would stores the rating of B (provider) on its node. Hence, in this approach,

a peer needs to provide storage to store the ratings of other peers in the network. On

the contrary, RCert uses server-side repositories, since the provider stores its own rat-

ing. Hence, RCert does not expect cooperation among peers for storage of reputation

information.

• Detecting Deception: In P2PRep, after completing a transaction, the initiator A pro-

vides a rating about the provider B and stores it locally. This information is not

distributed until explicitly requested from the network. Hence, if A lies about the rat-

ing (i.e in spite of having a good transaction with B, it might give a negative rating

to B), it is not detected by the protocol since this information is never broadcast or

provided to B. In RCert, since the provider is able to see the rating obtained from the

initiator, it is possible to detect such malicious behavior.

Thus, from the above comparison of the extended RCert protocol and P2PRep/XRep,

we observed that both approaches address the required security issues of authentication,

integrity and non-repudiation of messages, while providing reputations. The broadcast ap-

proach used in P2PRep/XRep would result in additional overhead in terms of the bandwidth

usage. Similarly, P2PRep/XRep adds more computational overhead compared to RCert by

46

creating public/private key pairs for every reputation message. Thus, we choose to imple-

ment the extended RCert protocol and provide the details of the design and implementation

of this protocol (GTKgREP) in Chapter 5.

47

Chapter 5

Design and Implementation of a

Gnutella-based Reputation

Management System

In this chapter we describe the details of the design and implementation of a

Gnutella-based reputation management system – GTKgREP (GTK-gnutella-Reputation

System). We chose to build GTKgREP as an extension to Gtk-Gnutella considering its

simplistic design, user-friendly GUI, the development environment used and the open-source

nature of the project. GTKgREP implements the RCert protocol with the extensions that

were discussed in Section 4.4. This chapter describes the additional components added to

Gtk-G, message formats, flow of events, state diagrams and test scenarios as part of the

implementation. We also provide an assessment of the overheads incurred by the protocol.

For the purpose of this discussion, a transaction is defined to be an interaction

between the initiator, the provider and the recommender beginning with the query mes-

sage from the initiator and ending with the revoke-ack message received from the previous

recommender. This includes all the intermediate messages described in Figure 4.4.

48

5.1 GTKgREP Subsystems

We have implemented GTKgREP as an extension to the basic implementation

of Gtk-G. Figure 5.1 shows the primary subsystems involved in the implementation of

GTKgREP. In this context, we use the terms subsystem, component and manager inter-

changeably. We provide this design based on an understanding of the open-source code for

Gtk-G, since no design document is available. The three components in Figure 5.1 - PKI

Manager, GTKgREP Reputation System and GTKgREP Reputation Database are the ad-

ditional components that were added to Gtk-Gnutella as part of this work. In this section,

we describe each of the components in further detail.

5.1.1 Message/Routing Subsystem

The message/routing subsystem is the core of Gtk-Gnutella. When a Gnutella

message is received from the network, this component parses the message (including the

GGEP extensions) and contacts the resource manager if the message is a query message.

Further, this contacts the reputation subsystem, if a GTKgREP message was parsed. It is

also involved in preparing Gnutella request/response messages based on inputs it receives

from the GUI component, resource manager and connection manager. As part of message

processing, it is involved in implementing GNet compression that was discussed in Sec-

tion 3.5.1. This component also maintains route tables for the leaf nodes by implementing

the QRP protocol, and responds to route requests on behalf of the leaf nodes, if the peer is

operating as a supernode in the network.

5.1.2 Connection Manager

The connection manager stores all the information about the network connections

associated with a peer. It stores information about the neighbors of a peer and is respon-

sible for generating ping/pong messages and responding to crawler messages. It maintains

information about the operating mode of the peer (leaf node or superpeer), based on the

average uptime of the peer and available bandwidth (by obtaining this information from

the stats component). The connection manager also implements the GWebCache which

was discussed in Section 3.5.1.

49

Figure 5.1: GTKgREP Components

Message/

Routing

subsystem

Connection

Manager

PKI

Manager

GTKGREP

Reputation

subsystem

GUI

subsystem

Resource

Manager

HTTP

Subsystem

Stats

Database

Property

Database

GTK-Gnutella

GTKGREP

Network

GTKGREP

Reputation

Database

5.1.3 Resource Manager

This component is involved in maintaining information about the resources (files

and directories) shared on the local node. It is also responsible for indexing all the resources

and setting up query routing tables if QRP is enabled. When a search request is received

from the network, the message subsystem contacts the resource manager to identify if there

is a match for the search request. It receives triggered events from the GUI whenever the

user adds/removes new files or directories that it intends to share.

50

5.1.4 GUI Subsystem

This component provides data structures for the user interface used in the im-

plementation of Gtk-G. This component also triggers events based on inputs provided by

the user and invokes appropriate actions on the GUI or in the core. This subsystem is

strongly decoupled from the message/routing subsystem, which gave rise to some design

issues (discussed in Section 5.2).

5.1.5 HTTP Subsystem

In Gnutella, a direct connection is established between the initiator and the provider

and the data transfer is performed over HTTP. This subsystem is involved in managing the

HTTP connections associated with a peer. It communicates with the connection man-

ager and the resource manager to initiate, transfer and terminate downloads/uploads of

resources.

5.1.6 Property and Stats Database

The property database manages user-configuration parameters and network-configuration

parameters. User-configuration parameters include variables such as maximum number of

uploads, maximum number of simultaneous downloads, etc. The network-configuration pa-

rameters include properties such as firewall configuration on the peer, address of the proxy,

etc. The stats database provides different static and run-time statistics about the current

session such as the number of active connections, number of ping/pong messages, number

of invalid messages received, etc.

5.1.7 PKI Manager

The PKI manager provides the cryptographic infrastructure required for GTK-

gREP. It provides interfaces for creating public/private key pairs associated with each peer,

MD5 [36] hashes and digital signatures associated with each message sent by the peer. We

use RSAREF [10], a cryptographic toolkit from RSA Laboratories to provide the above

cryptographic infrastructure. RSAREF has been designed as a library (in C) whose APIs

can be invoked from an application program, such as GTKgREP.

51

5.1.8 GTKgREP Reputation Subsystem

The reputation subsystem is the core of GTKgREP. It receives Gnutella messages

from the message subsystem and parses GTKgREP messages (present as GGEP extensions)

and takes appropriate actions. It also maintains state information for each transaction. This

component is responsible for forming GTKgREP request/response messages and dispatching

them to the network through the message subsystem. It interacts with the PKI manager to

generate the public/private key pair, to form the GUID and to verify/sign all GTKgREP

messages. It communicates with the reputation database to load the reputation information

into the run-time environment and to save run-time configuration changes.

5.1.9 GTKgREP Reputation Database

This database stores reputation certificates received from other peers and recom-

mendations for other peers. It also stores the history of the transactions for the owner of

the database. This database is accessed by the reputation subsystem when required.

5.2 Design Issues

Among different open-source Gnutella implementations, we chose Gtk-Gnutella

because of its extensive design and simplified user-interface. However, the base protocol

had to be modified due to some issues in the design of Gtk-G. We discuss some significant

issues in this section.

5.2.1 Stateless Protocol

The Gnutella protocol uses a request/response mechanism. Hence, it does not

require much state information to be maintained at each node. However, each transaction

in GTKgREP involves multiple exchanges of request/response messages, which mandates

storage of state information for each transaction. Hence, the implementation was changed

to store important state information on a per-transaction basis.

52

5.2.2 Gui-Core Dependency

In Gtk-G, the core is not independent of the GUI. All significant data structures in

the core are replicated in the GUI. Hence, when events are triggered, these data structures

are modified separately in the core and GUI. Recently, there has been some discussion on

the Gtk-G developers forum to tightly couple these two components. However, since the

source code was unavailable at the time of this work, we replicate data structures used for

GTKgREP messages in the core and GUI.

5.2.3 Non-persistent GUID

Every new instance of Gtk-G created a new GUID for the session. However, in

GTKgREP, a servent wishing to establish some reputation as a provider requires persistence

of this opaque identifier. We made necessary modifications to the source code for this

purpose. Further, to provide authentication of messages sent by this peer, the GUID is

computed to be the secure hash of the public key of the peer, for which only this peer

knows the corresponding private key.

5.2.4 Broadcast searches

By definition, search requests in Gnutella are broadcast to all connected nodes.

However, the GTKgREP protocol needs to send unicast messages. Hence, source code in

the connection subsystem and message subsystem were modified to incorporate this feature.

Whenever a unicast GTKgREP message is to be sent, the GTKgREP subsystem contacts

the connection manager to establish a Gnutella connection and then sends the message only

to that peer.

5.2.5 Size of search messages

The implementation did not allow search requests greater than 256 bytes to be

sent into the network. The Gnutella protocol draft [29] states Servents MAY drop Query

messages larger that 256 bytes, and SHOULD drop Query messages larger than 4 kB. Since

GTKgREP request messages are greater than 256 bytes, the code in the message subsystem

had to be rewritten to support such messages.

53

5.3 Message Formats

This section details the format for all GTKgREP messages. GTKgREP request

messages are sent in the Gnutella query message and response messages are sent in the

Gnutella query-hit message. All GTKgREP messages are embedded in the GGEP exten-

sions of the Gnutella message. More information about the data structures used in the

implementation can be obtained from Appendix A

While Verify, Ack, Update, Revoke are the GTKgREP request messages, RCert,

Last-timestamp, Timestamp, Update Ack, Revoke Ack are the GTKgREP response mes-

sages.

All request messages are obtained by modifying the Gnutella query message as

shown in Table 5.1.

Table 5.1: GTKgREP Request Message Format

Field Min Speed Search Criteria NUL(0x00) Extensions block

The fields Search Criteria and Extensions block have been modified to have the

following values:

Search Criteria = "GTKGREP:"<TYPE>":"

<TYPE> = "VERIFY" | "ACK" | "UPDATE" | "REVOKE"

Extensions Block = <EXTTYPE><LENGTH><VALUE>

<EXTTYPE> = Verify | Ack | Update | Revoke

<LENGTH> = Length of the extension

<VALUE> = <GUID><EXTN_ELEMENTS>

<GUID> = GUID of peer to whom request is to be sent

<EXTN_ELEMENTS> = The associated extension elements

All response messages only modify the filename field in the results set (Table 3.5)

in the query hit message. This field is set to the string ”GTKGREP:RESULTS” to indicate

that the query hit is in response to a GTKgREP request message.

Table 5.2 shows the message formats of each of the individual GTKgREP request

and response messages that are embedded within GGEP extensions. It also shows the sizes

of each field (in bytes).

54

Table 5.2: GTKgREP Message Formats

RCert (92 bytes)

Field Rater ID IP Address Port Rating Counter Timestamp Signature

Length 16 4 2 1 1 4 64

RCert Header (148 bytes)

Field Identity Certificate Num Prev Num Signature

Length 80 2 2 64

Certificates (212 + 92n bytes)

Field RCert Header RCert1 RCert2 RCertn Signature

Length 148 92 92 92 64

Verify Message (236 bytes)

Field Identity Certificate Signature

Length 80 92 64

Last timestamp (91 bytes)

Field GUID Timestamp Status IP Address (Optional) Port (Optional) Signature

Length 16 4 1 4 2 64

Ack (148 bytes)

Field Identity ACK Signature

Length 80 4 64

Timestamp (152 bytes)

Field Identity Time Transaction Counter Signature

Length 80 4 4 64

Update RCert(236 bytes)

Field Identity RCert Signature

Length 80 92 64

Update Ack(148 bytes)

Field Identity Ack Signature

Length 80 4 64

Revoke Ack(148 bytes)

Field Identity Ack Signature

Length 80 4 64

55

5.4 State Machine

This section provides the state machine for the GTKgREP implementation for the

initiator and provider. We do not indicate a state machine for the recommender, since the

protocol only defines request-response transactions for recommenders and does not require

storing any additional state information.

Figure 5.2 shows the state machine for the two entities that have been implemented

in GTKgREP. The part of the figure labelled State Machine - Initiator represents the states

and transitions for an initiator and the part of the figure labelled State Machine - Provider

represents the states and transitions for a provider. If there is any kind of error in any state

of the protocol, such as incorrect signature, invalid GUID, etc, the protocol terminates in

the error state for that transaction.

5.5 Flow of events

This section describes the interaction between the components of GTKgREP in

detail. It depicts the invocations made on the three additional components (PKI Manager,

GTKgREP Reputation System and GTKgREP Reputation Database) that were added as

extensions to the existing code base of Gtk-Gnutella.

Figure 5.3 shows the sequence diagram for GTKgREP when the user wishes to send

a search request. On starting up the client the connection manager looks up the GWebCache

entries in its database and sends connection requests as part of the peer discovery process. It

also exchanges ping/pong messages with the network. When the user enters a search string,

the GUI makes a call onto the message/routing subsystem to initiate a search request,

which in turn sends a query message into the network. After receiving replies to the query,

the servent would pass them on to the User Interface, which is responsible to display the

results to the user. At this point, our code intercepts the message and passes it into the

GTKgREP reputation subsystem to parse the reputation extensions. After verifying the

signature, GUID and the RCerts in the query response, the GTKgREP subsystem requests

the connection manager to set up a connection with the recommender and prepares the

Verify message. Again the handle is passed to the message/routing subsystem to dispatch

the Verify message.

A similar sequence of calls follow for each of the request/response messages follow-

56

Figure 5.2: GTKgREP State Machine

ERROR

Send: Update Ack

Recv: Ack

Send: Timestamp

Send: Update RCert

Recv: Valid

Last-timestamp

Send: Ack

Recv: Update Ack

Send : Revoke

Recv: Query

Send: Query-hit

Send: Query

Recv: Query-hit

Recv: Update Rcert

UPDATE_RECD

REQUEST_RECVD

Recv: Revoke Ack

Recv: Timestamp

Recv: Revoked

Last-timestamp

Send: Verify

VERIFY
ACK

DOWNLOAD

UPDATE

REVOKE

END

INITIAL STATE

REQUEST_SENT

State Machine -
Initiator

State Machine -
Provider

57

Figure 5.3: GTKgREP Sequence Diagram

Request rating for provider

Download complete

Peer Discovery

Begin download

Initiate download

Verify Signature, GUID

GTKgREP Parse (Timestamp)

Send Verify message (Unicast)

Prepare Verify message

Gnutella Connect

Request connection with recommender

Verify Signature, GUID

GTKgREP Parse (Rcerts)

Receive Query-Hit Message with RCerts

Display Replies

Send Query Message

Initiate Search Request

Send Ping/Pong Msgs

Network PKI Manager

GTKgREP

Reputation

Subsystem

Message/

Routing

Subsystem

GUI

Subsystem

HTTP

Subsystem

Connection

Manager

ing the Verify message up to the beginning of the download process, described in Figure 4.4.

For brevity, this information has been represented as dots in the sequence diagram. After

receiving the timestamp message, the GTKgREP subsystem contacts the HTTP subsystem

to initiate the download. The HTTP subsystem establishes an HTTP session with the

provider and begins transfer of the file.

After completion of the download, the GTKgREP component contacts the GUI

to initiate an interface for providing a rating to the provider. When the user is ready to

provide the rating, the sequence of interactions between the components are similar to the

one described above starting from the dispatch of the Update RCert message to the receipt

of the Revoke Ack message.

58

5.6 Test Scenarios

This section describes some test cases that were examined to verify the imple-

mentation. These test cases were intended to verify the correctness of the protocol. We

examine the protocol in cases where the participants follow the protocol as defined. We

also identify a few cases of abnormal behavior among the entities and provide results from

these scenarios.

We used a test bed that was set up for this purpose on the intranet. The test

bed comprised of four participating nodes as shown in Figure 5.4. These nodes were ran-

domly chosen to behave as the initiators, providers and recommenders in different network

configurations.

While logging into the network using Gtk-Gnutella, a peer contacts a well-known

host cache to discover its neighboring peers in the network. Since the test bed was within

the intranet, there was no publicly available host cache to discover its neighbors. Thus,

each peer had to be manually configured to be connected to the other peers on the test bed.

This provided us the flexibility to configure different network scenarios between the peers.

The dotted lines in Figure 5.4 indicate the possible connections between peers within the

test bed.

Bootstrap: The bootstrap involved successful creation of a public/private key

pair for each peer and computation of the GUID as the secure hash of the public key

of the user. This information was stored in the Gtk-Gnutella configuration file. In all

future transactions, the information for the GUID and key pair was obtained from this

configuration file. Each peer starts with a default rating (threshold) and creates and stores

a certificate for itself on startup, since it has no transactions in its history – all peers

startup as being their own recommenders. Thus, a servent is able to identify that it is

communicating with a new peer by examining this certificate information.

Normal transaction: In this setup, we tested a simple transaction between an

initiator and a provider, in the presence of one recommender for that provider. The initiator

was able to successfully verify the signature on the rating certificates received from the

provider. We also verified the authentication of messages exchanged between the initiator,

provider and recommender. As part of this test case, the network was set up to have two

different configurations:

• Directly connected peers: In this scenario, the initiating peer was assumed to be

59

Figure 5.4: P2P Test Bed

Hub

Peer A
192.168.1.1

Peer D

192.168.1.4

Peer C
192.168.1.3

Peer B
192.168.1.2

connected directly to the provider and recommender (neighbors). Hence, GTKgREP

messages were directly sent and received by the three entities. The initiator was

able to successfully download a file from the provider and provide a new rating for

this transaction. It was verified that all the entities updated their reputation and

recommendation databases at the end of this transaction.

• Routed Peers: The setup was modified to allow the initiator to be able to communi-

cate with the provider and recommender who were multiple hops away. Hence, the

GTKgREP messages were being routed by intermediate nodes to the destination en-

tities. Just as in the previous case, we tested a successful transaction. Since this case

was carried out following the previous case, the global rating for the provider was

verified to incorporate the rating from the previous transaction.

Multiple Providers: The shared resources on the nodes were modified to have

multiple providers sharing the same resource (file) in the network. On sending a search

request for this file, the initiator received a response from multiple providers, indicating

that they possessed the content. The initiator was able to see the rating for each of these

60

providers on the GUI and was able to select the best providers from this list. It then initiated

the download from these reputed peers. At the end of the transaction, the initiator provided

a rating that was sent to all the providers from whom the file was downloaded.

Multiple Recommenders: We modified the network configuration and the cer-

tificates stored, such that, the network consisted of one initiator, one provider and two

recommenders for this provider. We considered two cases that tested scenarios when the

most recent recommender was available and was offline.

• Most recent recommender online: This scenario was similar to the case in which we

described a normal transaction. Since the most recent recommender was available,

the initiator was able to receive a last-timestamp message verifying the providers’

certificates. The transaction proceeded as expected and the initiator was able to

download the file from the provider.

• Most recent recommender offline: In this test case, we were able to test the behavior

of the protocol where the initiator had to contact previous recommenders to verify the

providers’ rating certificates. The most recent recommender was intentionally shut-

down for this purpose. When the initiator did not receive a response from the most

recent recommender for its verify message, it contacted the previous recommender

(who was online). On receiving the last-timestamp message from the previous recom-

mender, the initiator verified that the status in this message was revoked and that the

IP address and port number corresponded with that of the most recent recommender.

Tampered Certificates: This test case was able to verify the onion signatures

described in the extended RCert protocol. We tested a scenario where a provider tampered

with his/her certificates. We spuriously added new certificates at the provider and deleted

some old certificates that had received bad ratings. When the initiator received the rating

certificates from the provider, it detected that the digital signature on these certificates were

incorrect. The certificates were dropped and the transaction failed in such a case. Similarly,

we tested verification of digital signatures on all other messages and dropped them if the

signature in the message did not match with the computed signature.

61

5.7 Assessment of overheads

In this chapter, we provide an assessment of the overheads incurred on the Gnutella

network, while providing the security features discussed. We provide statistics about the

bandwidth consumed on the network, the delay encountered and a count of the number of

public key encryptions performed by the protocol.

5.7.1 Bandwidth Usage

The total bandwidth consumed on the network by the exchange of RCerts when

an initiator receives responses from n providers, each of which have m recommenders is

given by the formula:

bandwidthrcert = n * (rcert header size + (rcert size * m))

We plot the bandwidth consumption as a function of the number of providers and

number of recommenders in Figure 5.5 for n = 30, m = 30. From this plot we observe that

even in the worst case of 30 providers and 30 recommenders, the maximum bandwidth used

by the RCert messages is of the order of 85Kb.

Figure 5.5: Certificate Bandwidth vs Number of providers and recommenders

0 5 10 15 20 25 30 0
10

20
30

0

1

2

3

4

5

6

7

8

9

x 10
4

Number of Recommenders

Number of Providers

B
an

dw
id

th
 U

sa
ge

The total bandwidth consumed by the protocol for a transaction would involve

62

bandwidth contributions from all the GTKgREP protocol messages. For the purpose of

computing the total bandwidth, we assume the ideal case in which the initiator contacts

only the most recent recommender and receives a successful last-timestamp message. The

total bandwidth is given by the sum of all the message sizes as below:

bandwidthtotal = rcertheadersize + history * rcertsize + verifysize + lasttimestampsize

+ acksize + timestampsize + updatesize + updateacksize + revokesize + revokeacksize

Figure 5.6: Total Bandwidth Consumption

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

4

Number of providers

T
ot

al
 B

an
dw

id
th

 (
by

te
s)

Figure 5.6 plots the total bandwidth consumed for the ideal case of contacting only

the most recent recommender. In this graph, the size of the history for each provider is

assumed to be fixed at five certificates. We observe the linear usage of bandwidth with the

increase in the number of providers. The total bandwidth consumed can be further reduced

in the presence of GNet compressions. We do not have results to indicate the percentage of

bandwidth compressed using this mechanism.

5.7.2 Round Trip Delays

In this section, we summarize the delay incurred in GTKgREP. The original

Gnutella protocol needed two round trips to complete a transaction. In GTKgREP, there

63

Table 5.3: Number of Signatures Computed/Verified

Message RCert Verify Last-TS Ack Timestamp Update/Ack Revoke/Ack

Initiator 1 1 1 1 1 3 2

Provider 2 - - 1 1 2 -

Recommender - 1 1 - - - 2

Table 5.4: Total Signatures and Hashes

Initiator Provider Recommender

Number of signatures computed 6 2 2

Number of signatures verified 4 4 2

Number of hashes (MD5 Digests) computed 4 3 2

are additional round trip messages being exchanged. To identify the number of round trip

times spent in this protocol, we assume the ideal case in which the initiator contacts atmost

one recommender and receives a successful last-timestamp message. We observe that the

protocol would require six round trip times to complete a transaction.

5.7.3 Cryptographic Statistics

GTKgREP uses public key cryptography to sign and to verify signatures. Thus,

in this section, we summarize the number of public key computations encountered in the

protocol. Each peer computes a new public/private key pair when it first joins the network.

This would also include situations where the peer changes its identity. Further, the peer

uses one hash to compute its GUID as the hash of its public key. Thus, bootstrap involves

one public/private key generation and one hash.

Subsequently, signatures are computed before sending GTKgREP messages and

are verified on receiving a message. Further, hashes (MD5 digests) are computed on receiv-

ing these messages. Table 5.3 indicates the number of signatures computed or verified for

each GTKgREP message by each entity.

Table 5.4 identifies the total number of signatures and message digests computed

for every transaction. This table gives an indication of the total overhead incurred by the

protocol in terms of encryption.

In this chapter, we have highlighted the design incorporated to build our Gnutella-

based reputation management system. We have also described the implementation details

64

of GTKgREP. We have thus realized the practical deployment of such a system in peer-

to-peer networks. We have summarized the overheads incurred by the protocol in terms of

bandwidth consumed, round-trip delay and number of encryptions.

65

Chapter 6

Conclusion and Future Work

This work identifies and analyzes different approaches to build reputation systems

in peer-to-peer networks. We identify one such reputation system - RCert and compare it

with another existing approach P2PRep, in terms of benefits, performance and security.

RCert uses public key cryptography to provide message integrity. It involves a

sequence of messages being exchanged between three entities - the initiator, provider and

recommender to exchange and stores reputations and to rate each other about the quality

of transactions. We chose to extend RCert because of its efficient use of bandwidth and

computational resources. The protocol was extended to incorporate additional messages to

allow peers to rate each other at a later time, thus allowing them to evaluate the quality of

the transaction. We also identified the vulnerabilities of this protocol and provided solutions

against the same. The protocol was extended to include message authentication and onion

signatures to prevent the certificate owner from tampering with his/her certificates. We

performed a security analysis on the RCert protocol and identified its benefits and features.

We have provided the design and implementation of the extended protocol - GTK-

gREP using Gtk-Gnutella, a Gnutella client on Linux. As part of the design, we provide

the state machine for the initiator and provider. We describe the components added into

Gtk-Gnutella to incorporate the functionality and highlight the data flow between these

components using sequence diagrams. We have provided results of our implementation

indicating the additional overhead incurred at the cost of providing security.

66

6.1 Future Work

Our work can be extended to detect and prevent deception in the network. Presently,

if the initiator provides a malicious rating at the end of the transaction (For eg: rates a

good transaction with a zero rating), there is no mechanism to prevent or punish such

misbehavior. Thus, further research could address this issue.

Another direction of research is to attempt incorporating GTKgREP into hybrid

networks where leaf nodes and superpeers exist in the system. Here, only the superpeers

would be involved in storing reputation messages and in responding to requests on behalf

of the leaf nodes. This approach can give additional benefits in terms of performance of the

network, since reputation messages would eventually be processed only by high-bandwidth

superpeers.

67

Bibliography

[1] Bearshare - the world’s best gnutella client. http://www.bearshare.com.

[2] The freenet project. http://freenet.sourceforge.net.

[3] Gnucleus website. http://www.gnucleus.com.

[4] Gnutella website. http://gnutella.wego.com.

[5] Gnutella-worm mandragore. http://www.viruslist.com/eng/viruslist.asp?id=4161.

[6] Kazaa media desktop. http://www.kazaa.com.

[7] Limewire: Running on the gnutella network. http://www.limewire.com.

[8] Morpheus website. http://www.morpheus.com.

[9] Napster website. http://www.napster.com.

[10] Rsaref - a cryptographic toolkit. http://www.spinnaker.com/crypt/rsaref/.

[11] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer information sys-

tem. In Henrique Paques, Ling Liu, and David Grossman, editors, Tenth International

Conference on Information and Knowledge Management (CIKM01), pages 310–317.

ACM Press, 2001. http://citeseer.nj.nec.com/aberer01managing.html.

[12] Eytan Adar and Bernardo Huberman. Free riding on gnutella. In Technical report,

Xerox PARC, August 2000. citeseer.nj.nec.com/adar00free.html.

[13] K. Bennett and C. Grothoff. Gap - practical anonymous networking. In Proceedings

of the Privacy Enhancing Technologies Workshop (PET 2003), March 2003. cite-

seer.nj.nec.com/bennett02gap.html.

68

[14] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach. Secure routing

for structured peer-to-peer overlay networks. In Proceedings of Fifth Symposium of

Operating Systems Design and Implementation (OSDI ’02), Boston, MA, USA, 2002.

[15] M. Chen and J. P. Singh. Computing and using reputation for internet ratings. In

Third ACM Conference on Electronic Commerce, 2001.

[16] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: Dis-

tributed anonymous information storage and retrieval system. Lecture Notes in Com-

puter Science, 2009, 2001. citeseer.nj.nec.com/clarke00freenet.html.

[17] F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.

Choosing reputable servents in a p2p network. In Eleventh International World Wide

Web Conference, Honolulu, Hawaii, May 2002.

[18] F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.

Implementing a reputation-aware gnutella servent. In International Workshop on Peer-

to-Peer Computing, Pisa, Italy, May 2002.

[19] David H. Crocker. Standard for the format of arpa internet text messages.

http://www.faqs.org/rfcs/rfc822.html.

[20] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-

area cooperative storage with cfs. In Eighteenth ACM Symposium on Operating Systems

Principles (SOSP ’01), october 2001.

[21] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela Samarati,

and Fabio Violante. A reputation-based approach for choosing reliable resources in

peer-to-peer networks. In Nineth ACM conference on Computer and communications

security, pages 207–216. ACM Press, 2002. http://doi.acm.org/10.1145/586110.586138.

[22] Ebay. The world’s online marketplace. http://www.ebay.com.

[23] R. Fielding et al. Hypertext transfer protocol – http/1.1.

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[24] Yann Grossel and Raphael Manfredi. Gtk-gnutella - the graphical unix gnutella client.

http://gtk-gnutella.sourceforge.net/.

69

[25] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system for peer-

to-peer networks. In Thirteenth International ACM Workshop on Network and

Operating Systems Support for Digital Audio and Video (NOSSDAV), 2003. cite-

seer.nj.nec.com/573330.html.

[26] Sandvine Incorporated. Peer-to-peer file sharing. The impact of file sharing on service

provider networks, http://downloads.lightreading.com/wplib/sandvine/P2P.pdf.

[27] Sepandar Kamvar, Mario Schlosser, and Hector Garcia-Molina. Eigenrep: Reputation

management in p2p networks. In Twelfth International World Wide Web Conference.

Stanford University, May 2003.

[28] M. Katz and C. Shapiro. Systems competition and network effects. Journal of Economic

Perspectives, 8(2):93–115, 1994.

[29] Tor Klingberg and Raphael Manfredi. Gnutella 0.6, January 2002. http://rfc-

gnutella.sourceforge.net/draft.txt.

[30] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis

Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,

Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent

storage. In Nineth International ACM Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. ACM, November 2000.

[31] Seungjoon Lee, Rob Sherwood, and Bobby Bhattacharjee. Cooperative peer groups in

nice. In IEEE Infocom 2003, April 2003. citeseer.nj.nec.com/lee03cooperative.html.

[32] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based

trust management framework. In IEEE Symposium on Security and Privacy, Oakland,

May 2002. citeseer.nj.nec.com/533810.html.

[33] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbehavior

in mobile ad hoc networks. In Mobile Computing and Networking, 2000.

[34] Beng Chin Ooi, Chu Yee Liau, and Kian-Lee Tan. Managing trust in peer-to-peer

systems using reputation-based techniques. Fourth International Conference on Web

Age Information Management (WAIM’03), August 2003.

70

[35] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation

systems. Communications of the ACM, 43(12):45–48, 2000.

[36] R. Rivest. The md5 message-digest algorithm, April 1992.

http://www.faqs.org/rfcs/rfc1321.html.

[37] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. In Symposium on Operating Systems

Principles, pages 188–201, 2001.

[38] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study

of peer-to-peer file sharing systems. In Proceedings of Multimedia Computing and

Networking 2002 (MMCN ’02), San Jose, CA, USA, January 2002.

[39] V. Scarlata, B. Levine, and C. Shields. Responder anonymity and anonymous peer-

to-peer file sharing. In Nineth International IEEE Conference on Network Protocols

(ICNP), 2001. citeseer.nj.nec.com/scarlata01responder.html.

[40] Vitaly Shmatikov and Carolyn Talcott. Reputation-based trust management. In Jour-

nal of Computer Security, 2003. citeseer.nj.nec.com/576212.html.

[41] Aameek Singh and Ling Liu. Trustme: Anonymous management of trust relationships

in decentralized p2p systems. In Third International IEEE Conference on Peer-to-Peer

Computing. Georgia Institute of Technology, September 2003.

[42] Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer electronic commu-

nities. In Fifth International Conference on Electronic Commerce Research (ICECR-5),

2002.

[43] Bin Yu and Munindar P. Singh. A social mechanism of reputation management in

electronic communities. In Cooperative Information Agents, pages 154–165, 2000. cite-

seer.nj.nec.com/yu00social.html.

[44] Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collaborative reputation

mechanisms in electronic marketplaces. In HICSS, 1999.

71

Appendix A

Data Structures in GTKgREP

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ GTKgREP data structures ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Structure: RCert

∗ Data structure that maintains rating certificate information

∗/

typedef struct rcert {

gchar rater id[16];

guint32 ip addr; /∗ IP address of the peer who rated this (current) peer ∗/

gint16 port; /∗ Port number of the peer who rated this peer ∗/

gint8 rating; /∗ Numerical value of rating provided ranging from 0 to 1∗/

gint8 counter; /∗ For later use ∗/

gint32 timestamp;/∗ For later use ∗/

guchar digital sig[DIGITAL SIGNATURE LEN]; /∗ This is the signature of the

∗ content of the certificate

∗ that was signed by the

∗ peer who provided the rating

∗ ∗/

72

} rcert;

/∗ Structure: Identity

∗ Data structure that contains a peer’s identity information

∗/

typedef struct identity {

gchar owner id[16]; /∗ GUID of the owner who sent this message ∗/

guchar public key[PUBLIC KEY LENGTH]; /∗ public key of the owner who

sent this message ∗/

} st identity;

/∗ Structure: RCert Header

∗ Data structure that maintains header information about the list of RCerts stored

∗ locally by the provider

∗/

typedef struct rcert hdr {

st identity identity;

guint16 cert num; /∗ Certificate number ∗/

guint16 prev cert; /∗ Previous certificates, 0 if none ∗/

guchar digital sig[DIGITAL SIGNATURE LEN];

} rcert hdr;

/∗ Structure: Global State List

∗ A new state element is created for each provider within a

∗ transaction

∗/

typedef struct global state list {

gchar provider guid[16]; /∗ GUID of the provider ∗/

gchar recommender guid[16]; /∗ GUID of the recommender ∗/

state table element state; /∗ Current state of the transaction ∗/

} st global state element;

73

/∗ Structure: Pending Searches

∗ Data structure that maintains state information about a

∗ transaction

∗/

typedef struct pending searches {

gchar provider guid[16]; /∗ GUID of the provider ∗/

gint32 provider ip; /∗ IP address of the provider ∗/

gint16 provider port; /∗ Port number of the provider ∗/

gchar recommender guid[16]; /∗ GUID of the recommender ∗/

gint timestamp; /∗ Timestamp received from the provider ∗/

gint8 rating; /∗ This value is between 0 and 1 and is the rating that

∗ is provided by the user at the end of the transaction

∗/

gint update status; /∗ one of grep state init, grep state sent,

∗ grep state ack ∗/

gint revoke status; /∗ one of grep state init, grep state sent,

∗ grep state ack ∗/

} st pending searches;

/∗ Structure: ts element

∗ This data structure stores the timestamps sent to the

∗ initiator who requested for a resource. A new element of this type is

∗ created every time a new ACK message is received and a new TIMESTAMP element

∗ is being created

∗ The timestamp is then matched to an incoming UPDATE RCERT message to ensure

∗ that we have received the update from the right peer

∗ ∗/

typedef struct ts element {

gint timestamp; /∗ Timestamp sent to the initiator ∗/

gchar remote guid[16]; /∗ GUID of the initiator ∗/

} st ts element;

74

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ PKI Data Structures ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ RSA public and private key.

∗/

typedef struct {

unsigned int bits; /∗ length in bits of modulus ∗/

unsigned char modulus[MAX RSA MODULUS LEN]; /∗ modulus ∗/

unsigned char exponent[MAX RSA MODULUS LEN]; /∗ public exponent ∗/

} R RSA PUBLIC KEY;

typedef struct {

unsigned int bits; /∗ length in bits of modulus ∗/

unsigned char modulus[MAX RSA MODULUS LEN]; /∗ modulus ∗/

unsigned char publicExponent[MAX RSA MODULUS LEN]; /∗ public exponent ∗/

unsigned char exponent[MAX RSA MODULUS LEN]; /∗ private exponent ∗/

unsigned char prime[2][MAX RSA PRIME LEN]; /∗ prime factors ∗/

unsigned char primeExponent[2][MAX RSA PRIME LEN]; /∗ exponents for CRT ∗/

unsigned char coefficient[MAX RSA PRIME LEN]; /∗ CRT coefficient ∗/

} R RSA PRIVATE KEY;

